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Abstract

Performance metric diagnostics of lithium-ion batteries are important for electric vehicles. A novel diagnos-
tics method during vehicle charging is proposed using a feedforward neural network and the battery voltage
response to a current pulse perturbation, hence the name ‘pulse-injection-aided machine learning’ (PIAML).
Performance metrics are quantified using state of health and state of power, representing capacity and power
fade. Data is collected for lithium-ion battery cells at various states and pulsing scenarios, resulting in 5,184
unique voltage responses for evaluating the technique. PIAML is shown to estimate states of health and
power with high fidelity, and can also be used to initialize the state of charge. In the best-case, average trial
error is 0.0057 for state of health estimation, 0.0069 for power, and 0.0072 for charge. Neither charging his-
tory nor battery parameters are required, and diagnostics can be performed in less than 3 minutes. Results
show that PIAML is a high-accuracy general-purpose technique with potential for wider applications.
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1. Introduction

Understanding lithium-ion battery (LIB) perfor-
mance is crucial for proper control of the LIB sys-
tems. For electric vehicle (EV) applications espe-
cially, accurate knowledge of the states of the bat-
tery pack can improve performance and stability [1].
There are 3 key states used to gauge performance:
state of charge (SoC), state of health (SoH), and
state of power (SoP). The cell SoC varies directly
with use, and can change significantly over short
time periods. Over long time periods, cell degra-
dation causes capacity and power fade – quantified
using SoH and SoP. These two performance met-
rics directly affect the optimal operation of LIB sys-
tems [2]. Since battery states are not directly mea-
surable, accurate diagnostics in the battery man-
agement system (BMS) are important for reducing
degradation, increasing remaining useful life, and

∗Corresponding author.
Email address: matthias.preindl@columbia.edu

(Matthias Preindl)

understanding the economic value of battery cells
[3].

State estimation methods are broadly divided
into two categories: model-based and data-driven.
Model-based methods compute or measure param-
eters for electrochemical or regression models us-
ing laboratory data. Model-based approaches of-
ten have a trade-off between accuracy and com-
putational speed [4]. They rely on battery mod-
els to faithfully reconstruct SoC or SoH based on
the model parameters. Not only do these models
face challenges in parametrization, but they are of-
ten used for estimating individual states for spe-
cific battery chemistries and thus lack generality
[5]. Still, model-based methods remain popular.

Several model-based methods are used for both
SoC and SoH estimation. Open-circuit voltage
(OCV) charging curves are used in [6, 7]. Incre-
mental capacity analysis (ICA) is related to OCV
and used in [8, 9]. Estimation with OCV charging
curves and ICA curves requires long data acquisi-
tion periods, which is usually not feasible on-line.
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Nomenclature

Abbreviations

ABR Amplitude-bias ratio

BMS Battery management system

CC Constant current

EV Electric vehicle

FNN Feedforward neural network

ICA Incremental capacity analysis

LIB Lithium-ion battery

MAE Mean absolute error

NCA Nickel cobalt aluminum

NN Neural network

OCV Open circuit voltage

PBM Physics based model

PIAML Pulse-injection-aided machine learning

RNN Recurrent neural network

SoC State of charge

SoH State of health

SoP State of power

SVM Support vector machine

Symbols

η Coulombic efficiency [—]

Cn Capacitor n [F]

i Cell current [A]

IA Current pulse amplitude [A]

IB Bias current [A]

Ipk0 Peak discharge current of fresh fully charged cell
[A]

Ipk Peak discharge current [A]

q Remaining cell capacity [Ah]

Qm Maximum cell capacity [Ah]

Qm0 Initial maximum cell capacity [Ah]

Rn Resistor n [Ω]

t Time [s]

Vmin Cutoff voltage [V]

VOC Open circuit voltage [V]

Coulomb counting is another simple method to ap-
proximate the charge passed out of the battery. In
laboratory conditions, this method can accurately
estimate SoH [10]. In real-time applications, error
accumulates over time, which renders the method
unusable. To address this, Kalman and particle
filters apply error-correcting feedback systems to
achieve high performance [11, 12, 13]. Kalman fil-
ters were also used for joint estimation of states [14],
which has the potential to streamline BMS opera-
tions and increase accuracy by eliminating inter-
dependencies. These filters can be complex and re-
quire long computation times, especially when more
accurate battery models are used. State-specific
methods include battery charge equalization mod-
els for SoC [15], and LIB frequency response tech-
niques [16, 17] and physics-based models (PBM)
for SoH [18, 19]. While accurate SoC estimation
is fast, SoH methods tend to be time-consuming.
The LIB frequency response is slow to acquire, and
PBMs represent a challenging parameter identifica-
tion problem that may not be widely applicable for
all battery chemistries.

SoP, unlike SoC and SoH, is not as widely re-
searched [20, 21]. It can be calculated using char-
acteristic mapping, which simply defines SoP in
terms of other states. More advanced SoP meth-
ods use equivalent circuit models [22, 23], particle

filters [24], polarization voltage models [25], objec-
tive function minimization [26], and fuzzy look-up
table [27].

In contrast to model-based state estimation
methods, data-driven state estimation may offer
greater accuracy, speed, and generality. Data-
driven techniques treat the battery cell as a black-
box system. No electrochemical parameters are
used. Rather, statistical techniques or machine
learning are used to analyze data from cell pro-
cesses. Typically data-driven techniques involve of-
fline training before implementation in real applica-
tions. Offline training and data collection may re-
quire significant computing resources. After train-
ing, online estimation with data-driven methods
uses relatively simple computations and achieves
high accuracy [20].

Neural networks (NN) and support vector ma-
chines (SVM) are popular data-driven methods for
multi-dimensional modelling [28]. Different archi-
tectures, such as feedforward NN (FNN), recur-
rent NN (RNN), ‘Transformer’ NN, or least-squares
SVM, are optimized for different tasks [29, 30].
They are applied to SoC estimation [31, 32, 33],
SoH estimation, [34, 35, 36, 37], and joint estima-
tion [38, 39]. The performance of NN and SVM
depends on the input data. A single time step of
data may be straightforward to obtain, but may
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Figure 1: Diagram of pulse scheduling framework for PIAML in EV charging using a unipolar charge pulse for the pulse
perturbation

not be able to yield accurate results. NN and SVM
may also suffer from overfitting, and performance
can vary depending on the quality of the train-
ing dataset. Fuzzy logic is used for SoC and SoP
[40, 41, 42]. Fuzzy logic faces difficulties in gener-
ality and convergence time. Grey relational anal-
ysis (GRA) [43], and Gaussian process regression
(GPR) [5, 44] are used for SoH. Both can be used
for long-term predictions, but are computationally
complex and thus face difficulty in real-time imple-
mentation. Particle-swarm optimization is used for
SoC and SoH [45], but shows slow convergence.

1.1. Contributions and Outline

There is a need for a diagnostics technique
that is general-purpose and highly accurate with
short estimation time. This article thus pro-
poses pulse-injection-aided machine learning (PI-
AML) for health and performance diagnostics, re-
alized using a FNN. The scheduling framework for
diagnostics is proposed for intermittent use during
EV charging periods. Training is performed with
thousands of voltage responses to a variety of cur-
rent pulse perturbations of varying amplitudes and
lengths. It is shown that PIAML achieves accurate
and robust predictions of SoC, SoH, and SoP, with
flexibility over the pulse shape.

An overview of the proposed application area,
theoretical principles, and development for PIAML
is given in Section 2. Verification results of PIAML
are presented and discussed in Section 3. The ar-
ticle is summarized and future work is described in
Section 4.

2. Pulse-Injection-Aided Machine Learning

2.1. Application in Electric Vehicle Diagnostics

PIAML is well-suited for EV diagnostics. It has
been shown that daily charging profiles are highly
predictable based on user profiles [46]. PIAML can
exploit this predictability to become a reliable and
fast daily diagnostics tool. SoH and SoP, unlike
SoC, do not need to be continuously tracked, so it is
sufficient to schedule the pulse during low-intensity
applications like EV charging.

A diagram of the proposed pulse scheduling
framework is shown in Figure 1. Once the EV is
plugged into the charger, the pulse is applied to the
battery pack. The voltage response of each cell is
measured and input to PIAML diagnostics, which
computes the performance metrics within seconds.
This can be used to track capacity fade and power
fade. PIAML can also provide a high-fidelity ref-
erence value for SoC, which can be used to peri-
odically initialize SoC estimation methods such as
coulomb counting or Kalman filters. After the pulse
is injected, the BMS allows normal charging to re-
sume. Since charging profiles often last for several
hours [47], any disruption from PIAML perturba-
tion is negligible.

2.2. Principles of pulse perturbation

Pulsing LIB cells is known to encode significant
amounts of information about the internal cell pro-
cesses [48, 49, 50]. Weppner et al. [48] introduced
in 1977 the pulse-based galvanostatic intermittent
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Figure 2: Comparison of model-based estimation and proposed PIAML estimation framework

Figure 3: Flowchart representing offline tasks and online estimation process for PIAML

Table 1: List of amplitude-bias ratios and constituent am-
plitudes and biases investigated

ABR [dB] Amplitude [A] Bias [A]

-40 0.03 3
-30 0.03 1
-20 0.3 3
-10 0.3 1
∞ 3 0

titration technique, now widely used for overpoten-
tial diagnostics [49]. More recently Weng et al. [50]
used pulses to accurately characterize LIB cell life-
times. There is no study that has fully explored
the use of pulses as a general-purpose diagnostics
signal.

In PIAML, the cell is perturbed with a current
pulse. The response is then fed to a FNN to pre-
dict target outputs such as LIB states. Fig. 2 com-
pares model-based methods with PIAML. There are
interdependencies between model-based estimators,
but PIAML estimators can make predictions inde-
pendently.

It has been shown that the voltage responses to

randomized pulses with a RNN can predict SoH
[51]. The input pulse in [51], however, simulates a
drive cycle, which may hinder RNN training due to
random variation. Drive cycles may not be the opti-
mal pulse shape. Additionally, PIAML was shown
to yield accurate results for SoC in [32], but the
pulse shape is difficult to use in real systems and
PIAML is only verified for ‘snapshot’ applications
at 25◦C. In [35] and [36], partial-charging curves
and machine learning are used for SoH diagnostics.
While this minimizes disruption in cell operation,
partial-charging curves are unideal for observing
electrochemical overpotentials in the cell that could
provide insight into internal cell processes [4]. In
contrast, PIAML uses current pulse perturbation
to obtain a voltage response that encodes more in-
formation in a much shorter period of time. Hence
PIAML’s applicability to diagnostics beyond SoH
[35, 36].

This article therefore investigates different pulses
at various temperatures, which increases the va-
lidity of the results and demonstrates robustness.
Pulses are defined by their shape, amplitude, bias,
and length. Pulse shape affects the frequency con-
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(a) (b) (c)

(d) (e)

Figure 4: Photographs of experimental setup and diagram of cycling procedure for 0-bias pulses, showing (a) Cycler and
temperature chamber, (b) Cells inside chamber, (c) Data collection cycling procedure diagram, (d) Sample of cycling voltage
and current, and (e) Detail of pulse train.
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Figure 5: Input and output data, showing (a) Current pulses from cycler labelled by ABR, where positive cycler current
indicates charging, and (b) voltage responses to ABR = ∞dB pulse
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Figure 6: Overview of state variation, showing (a) Variation of SoP against SoH, color-coded by SoC, for pulses with ABR =
∞dB, and (b) Aggregated capacity fade curves for 21 cells at various temperatures

tent of the pulse which, following spectroscopy prin-
ciples, determines the amount of encoded informa-
tion [52, 53]. Rectangle pulses are examined here,
corresponding to constant current charge or dis-
charge. A variety of pulse amplitudes and biases
were tested to examine the effects of pulse shape
on PIAML performance. We label pulses by the
amplitude-bias ratio (ABR). Reducing the ABR al-
lows the effects of ‘noise’ to be considered. ABR
[dB] is given by

ABR = 20 log
IA
IB

(1)

where IA = {0.03, 0.3, 3}A is the amplitude of the
injected pulse current and IB = {0, 1, 3}A is the
bias current, resulting in the ABR values listed in
Table 1. The overall input current to the cells i(t)
over time t is the superposition of the constant bias
IB with the pulse shape ip,

i(t) = IAip(t) + IB (2)

The bias acts as a source of noise which obfus-
cates ip. Hysteresis from an incompletely rested
cell could also act as a time-varying bias, reducing
the ABR.

2.3. Offline development and online operation

Several offline tasks must be performed before PI-
AML can be implemented in a real system. A com-
parison of the offline and online workflow is shown
in Fig. 3. Offline, data collection and processing

are required to generate the input pulses and tar-
get outputs for training the FNN. Laboratory tech-
niques are used to obtain the target states, such as
coulomb-counting and equivalent circuit modelling.
These methods are time consuming and infeasible
for real-time use. Photographs of the experimental
setup are shown in Fig. 4. Cycling procedure for
∞ ABR pulses is illustrated in Figs. 4c-4e. The
perturbation pulses shown in Fig. 5a are used to
obtain the voltage-time response of the cells, exem-
plified in Fig. 5b.

Six pulse shapes are extracted from the ∞ ABR
pulse, as labelled in Fig. 5a. The∞dB pulse shape
represents the best-case scenario: a high ABR pulse
applied to a cell rested for 1 hour. There are
four individual portions named ‘Charge’, ‘Rest 1’,
‘Discharge’, and ‘Rest 2’, each lasting 60s or 30s.
The two unipolar portions are named ‘Unipolar-
charge’ and ‘Unipolar-discharge’ and last 1.5 min.
Unipolar-charge portions are applied after a 1 hour
rest, after which the cell hysteresis voltage has dis-
sipated. Unipolar-discharge portions, however, are
applied after a 30 s rest period. This means that
the hysteresis voltage remains significant, as can be
seen in Fig. 4e, thus allowing the effects of incom-
plete cell relaxation to be examined.

Three cell states are considered as NN targets:
SoC, SoH, and SoP. The cycling procedures create
a wide range of cell states. Nominal SoC ranges
from 0.05 to 0.9, while SoH ranges from 0.69 to 1.
As suggested by Fig. 5b, degraded cells have higher
impedance, which causes pulses applied at the same
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SoC to diverge over time. Evolution of SoP with
SoC and SoH is shown in Fig. 6a. The variation of
maximum capacity with cycle number for all cells
at the various temperatures is shown in Fig. 6b.
Note that this represents the vector of aggregated
unique capacities at a given temperature, and not
the degradation of any one cell.

After data processing, the NN is trained. NN
training is a supervised learning process where the
input voltage response is matched to target out-
puts. FNN are formed from several ‘hidden layers’
of interconnected nodes. Nodes within the input
and hidden layers are linked by network weights,
and generate outputs based on the activation func-
tion. During training, the FNN learns the opti-
mal weights between nodes. In each training cycle,
weights are readjusted based on the predicted out-
put, the optimizer function, and the batch size of
the training data after comparison with the target
data.

Online, PIAML is implemented in the BMS us-
ing the trained FNN, a matrix network of weights
and connections learnt during the offline training
process. The input voltage response and tempera-
ture are fed into the FNN, which then predicts the
state. This can be performed quickly for networks
with a small number of parameters [54]. PIAML
learns the target state from the pulses, thus ‘by-
passing’ traditional techniques. No further battery
parameters are needed, making PIAML an attrac-
tive online alternative for diagnostics.

3. Verification Results and Discussion

Model accuracy and robustness is verified by
comparing the best-case scenario with results using
a variety of pulse parameters. Mean absolute er-
ror (MAE) is used for comparison with other stud-
ies. PIAML performance for varying nodes, vary-
ing ABR, pulse portions, and rest time are shown
in Fig. 7. For the best case in Fig. 7a, PIAML
achieves average MAE of 0.0057 for SoH estima-
tion, 0.0072 for SoC estimation, and 0.0069 for SoP
estimation using 32, 128, and 64 nodes respectively.
Accuracy deteriorates in Fig. 7b as ABR decreases.
This is especially pronounced for SoH and SoP es-
timation, though SoC estimation remains relatively
accurate. The worst-case pulse shapes have ex-
tremely low ABR, yet the MAE remains below 0.10
for estimation of all states. This suggests that PI-
AML is resistant to increased ‘noise’ obfuscating
the pulse signal. Individual portions, shown in Fig.

7c, yield higher error, with deterioration particu-
larly notable for SoH and SoP. Results also sug-
gest that different state information is encoded in
different portions. Rest periods may encode more
SoC information than charge or discharge, suggest-
ing that a shorter pulse can be used. Variation in
the MAE ranges may be due uncertainty on the tar-
get data. Coulombic efficiency and OCV, for exam-
ple, are approximated from the cycling data, thus
affecting the target values of SoC and SoP. Thus
FNN estimation error may not only reflect FNN
accuracy, but also data uncertainty.

Results for variable rest time using unipolar puls-
ing are shown in Fig. 7d. Reducing the rest time
from 1 hour to 30 s, as in the unipolar-discharge
portion, only slightly reduces accuracy. This shows
that PIAML is robust against non-ideal pulsing
conditions. Unipolar pulses perform similarly to
the full bipolar pulse, and are easier to implement
because a single current source or sink is required,
and not both. This would facilitate its use in PI-
AML diagnostics during EV charging. The success
of unipolar perturbation suggests that the pulse
amplitude, duration, and rest period can be further
reduced.

Sample plots of the FNN training and validation
loss in Fig. 8 show that overfitting did not occur.
The individual predictions against cycle number are
highly accurate, as shown in Fig. 9. In Fig. 9a, SoH
decreases monotonically with cycle number, while
SoC and SoP in Figs. 9b and 9c do not. This is
because the SoC may vary from 0 to 1 at any point
in the cycle, while capacity loss is irreversible. Since
the SoP is a function of both SoC and SoH, it also
trends downward.

PIAML is compared with other diagnostics meth-
ods in Table 2. Error refers to the average MAE,
if more than one value is reported. Time is defined
as the minimum time needed to collect input data
for the estimator and process the data to generate
a prediction, as reported in the study. It can be
seen that PIAML strikes a balance between accu-
racy and speed, with high generality.

4. Conclusion

The diagnostics method PIAML was proposed
for use during EV charging cycles. PIAML was
shown to yield fast and accurate results for SoC,
SoH, and SoP estimation using a FNN and the
voltage response to a current pulse perturbation.
Validation was performed for a wide range of cell
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Figure 7: PIAML results using different pulse and NN parameters, showing prediction error after varying (a) NN node numbers,
with best-case results highlighted, (b) ABR, (c) Pulse shapes, and (d) Rest times
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Figure 8: NN training loss showing the decrease in PIAML training and validation error with epoch number for full-length
pulse with ABR = ∞dB.

0.7

0.8

0.9

1.0

Pr
ed

ic
te

d 
So

H

Trial plot for SoH

Target output
Prediction

0 200 400 600
Cycle number

0.00

0.02

0.04

Ab
so

lu
te

 e
rr

or

Mean
Error

(a)

0.25

0.50

0.75

Pr
ed

ic
te

d 
So

C

Trial plot for SoC

Target output
Prediction

0 200 400 600
Cycle number

0.00

0.02

0.04

Ab
so

lu
te

 e
rr

or

Mean
Error

(b)

0.25

0.50

0.75

1.00

Pr
ed

ic
te

d 
So

P

Trial plot for SoP

Target output
Prediction

0 200 400 600
Cycle number

0.00

0.02

0.04

Ab
so

lu
te

 e
rr

or

Mean
Error

(c)

Figure 9: Plots demonstrating PIAML accuracy on the unseen testing subset, using full-length pulse with ABR = ∞dB and
plotted against cycle number.
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Table 2: Comparison of diagnostic methods in selected studies. ‘Time’, if known, refers to the time to obtain input data and
generate a prediction at the reported accuracy.

Method Output Error [MAE] Time
PIAML [q.v.] SoH, SoC, SoP 0.0065 1.5+ min
SVM with partial charging curves [35] SoH 0.03 15+ min
‘NARX’ NN with partial charging curves [36] SoH 0.003 15+ min
Genetic particle filter [24] SoC, SoP 0.0081 6 s
Polarization voltage model [25] SoP 0.014 100+ s
‘Transformer’ NN with self-supervised learning [31] SoC 0.0055 —
FNN with extended Kalman filter [33] SoC 0.02 [max] 10+ min

states and pulse shapes. PIAML was demonstrated
to be an accurate technique for health and perfor-
mance diagnostics that remains effective even for
pulse shapes with low ABR.

Future work includes investigation of more pulse
shapes. Unipolar perturbation with smaller ampli-
tudes and shorter durations could facilitate direct
real-time state estimation. Pulses could be applied
as superpositions over a discharge, as shown by the
results for low ABR. These alterations could allow
the BMS to directly inject a low-amplitude, high-
frequency pulse using the balancing circuits during
drive cycles. Additionally, the effects of prior usage
could be explored. PIAML may have applicability
in lower levels of degradation, such as degradation
modes [2]. Exploring the full potential of PIAML
could allow for cheaper and more reliable cell diag-
nostics in future battery applications.

Methods

Data Collection

Data is collected using Samsung INR18650-30Q
lithium nickel cobalt aluminum (NCA) oxide cells.
NCA cells have desirable performance, but require
additional safety considerations [55]. Cell charac-
teristics are summarized in Table 3.

Cells are cycled using the Neware BTS4000 series
5V6A cycler at 3 temperatures, {5, 25, 40}◦C, and
at standard pressure. A total of 21 cells are cycled,
with each ABR and temperature applied to multi-
ple cells to reduce individuality effects. Voltage and
cycler current are monitored at 10 Hz.

For each SoH, a capacity check is performed
with a 0.1 C-rate constant current (CC) discharge
from full. Cells were then recharged using CC and
constant voltage procedures. After resting, pulses
are applied at various SoC levels achieved using
a 0.3 Ah discharge, until a 2.5 V cut-off voltage is
reached. For pulses with non-zero bias, the bias
current acts as a continuous discharge, so pulses are

Table 3: Cell characteristics

Characteristic Value Units

Cell chemistry NCA —
Nominal capacity 3000 mAh
Cut-off voltage 2.5 V
Cut-off current 150 mA
Max charge voltage 4.2 V
Peak charging current 4 A
Peak discharge current 15 A

instead injected at intervals of time corresponding
a 0.05 change in SoC. For all cells, degradation is
performed with 50 charge/discharge cycles at 1 C-
rate, until the cell fails an ‘end-of-life’ test. In total,
5,184 pulses at unique combinations of SoC, SoH,
SoP, and temperature are obtained for training and
evaluation. All pulses were 1 min, except for the 3
min ∞ dB pulse.

Offline data processing

Target outputs are calculated using traditional
modelling techniques. SoC quantifies the remaining
charge q in the cell relative to the maximum charge
capacity of the cell Qm, calculated with

SoC =
q

Qm
(3)

SoH is the normalized maximum capacity, given by

SoH =
Qm
Qm0

(4)

where Qm0 is the maximum capacity of the unaged
cell. SoH decreases as the cell degrades. Reference
values for Qm and q can be obtained from coulomb
counting, represented by

q = η

∫
i(t)dt (5)

where η is coulombic efficiency, assumed constant
at 0.99, and i(t) is the relevant cell current. SoP
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Table 4: Shared hyperparameters amongst FNN models

Hyperparameter Value

Hidden layers 2
Network weight constraint 5
Dropout rate 0.1
Learning rate 0.001
Batch size 64
Training epochs 32000
Activation function relu
Optimizer Adam

quantifies the peak power output of the cell, im-
portant for measuring power fade. It is affected by
both SoC and SoH. SoP is defined using the peak
discharge current Ipk,

SoP =
Ipk
Ipk0

(6)

where Ipk0 is the peak discharge current of the cell
at SoC = 1 and SoH = 1. Current Ipk is a function
of the SoC and SoH, defined with the model-based
dynamic multi-parameter method [22],

Ipk =
VOC − Vmin

η∆t
Qm

∂VOC

∂SoC +R1

(
1− e−

∆t
R1C1

)
+R0

(7)

where VOC is the open-circuit voltage, Vmin = 2.5V
is the cut-off voltage, ∆t = 60s is the time horizon,
and R0, R1, and C1 are the state-varying first-order
equivalent circuit model parameters. Experimen-
tal approaches for measuring Ipk pose an inherent
safety risk, meaning that Ipk must be approximated
using a battery model [22, 23, 26]. Adaptive charac-
teristic maps may also be used [21]. With the 60s
time horizon, SoP represents the LIB cell’s peak
power capabilities over the next minute.

Neural Network Design

The Keras module of Tensorflow [56] is used to
build a simple sequential FNN. A different FNN
is trained for estimating each state, and for each
unique pulse shape. The FNN is a regression net-
work. This means that the FNN output does not
belong to a discrete set of states. Thus even though
the target data has discrete values, the FNN will be
able to perform state estimation for all values in the
range 0 to 1. Voltage responses and the vector of
temperature measurements are used as input data,
and the target outputs are the battery states, cal-
culated offline.

Training is configured to minimize the mean
squared error. Cross-validation was performed by
running 20 trials with randomly selected subsets of
data from all cells and cycles for training, valida-
tion, and testing. Random allocations followed the
distribution of 64% for training, 16% for validation,
and 20% for testing. Training and validation data
are used to optimize the FNN and prevent overfit-
ting. The testing subset is not seen by the FNN
during training, and is therefore presented to the
FNN as a completely new dataset.

A summary of the chosen hyperparameters is
listed in Table 4. The same hyperparameters are
used for estimation of each state, except the num-
ber of nodes per hidden layer. To choose the op-
timal node number for each state, repeated tests
using varying node numbers from 8 to 512. The
node number that yielded the lowest prediction er-
ror from the ∞ dB pulse was then selected for
further evaluation. Training was performed offline
with 32000 epochs using a TITAN Xp NVIDIA
graphical processing unit. Online, predictions made
with the trained FNN require minimal computation
time (on the order of microseconds) and do not re-
quire any specific battery model.
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