Towards unified machine learning characterization of lithium-ion battery
degradation across multiple levels: A critical review

Alan G. Li*, Alan C. WestP, Matthias Preindl®*

% Department of Electrical Engineering, Columbia University in the City of New York, 500 W. 120th St., Mudd 1310, New
York, NY, 10027, USA

b Department of Chemical Engineering, Columbia University in the City of New York, 500 W. 120th St., Mudd 801, New
York, NY, 10027, USA

Abstract

Lithium-ion battery (LIB) degradation is often characterized at three distinct levels: mechanisms, modes,
and metrics. Recent trends in diagnostics and prognostics have been heavily influenced by machine learning
(ML). This review not only provides a unique multi-level perspective on characterizing LIB degradation,
but also highlights the role of ML in achieving higher accuracies with accelerated computation times. We
survey the state-of-the-art in degradation research and show that existing techniques lay the foundations
for a unified ML method — a single tool for characterizing degradation at multiple levels. This could inform
optimal management of lithium-ion systems, thus extending lifetimes and reducing costs. We outline a
framework for the hypothesized technique and identify the challenges and future trends in degradation
research. It is shown that pulse-injection has high potential, and that further work is needed for in-situ

diagnostics of degradation mechanisms.
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1. Introduction

Lithium-ion batteries (LIBs) are central to the
decarbonization of transport and the integration
of renewable energy into the grid.  Technolo-
gies like electric vehicles (EVs) and grid stor-
age are likely to become reliant on LIBs in the
coming years due to their high energy densi-
ties, efficiency, and reliability [1]. The future of
battery research lies not only in next-generation
chemistries such as lithium-air or solid-state [2, 3],
but also better management of existing commer-
cial cells such as LiNizMn,Coi_;_,O2 (NMC),
LiNizCoyAli—5—yO2 (NCA), and LiFePO, (LFP)
[4, 5]. Developing advanced battery management
systems (BMS) is therefore a key factor in driv-
ing down battery costs and promoting widespread
adoption.

Advanced battery management is essentially syn-
onymous with big data and machine learning (ML)
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[6, 7]. Though safety remains the fundamental
task of the BMS, decentralized architectures using
‘smart cells’ could allow the BMS to actively ex-
tend cell lifetime. Achieving this goal depends on
a better understanding of LIB degradation. Novel
sensing technologies such as strain sensors and opti-
cal fibers have been proposed for this purpose, but
the cost and computational burden of big data re-
main challenges [8, 9]. Meanwhile, ML techniques
using traditional sensing techniques — voltage, cur-
rent, and temperature — have been successful at
both degradation diagnostics and prognostics [10].

Battery degradation research traditionally lies
in the intersection of electrical and chemical en-
gineering. This is because there are multiple lev-
els of detail from which to examine LIB degrada-
tion, as shown in Figs. 1 and 2. Several stud-
ies have organized degradation in a similar fashion
[12, 13, 14, 15, 16], though rarely is each level exam-
ined in detail. Often the internal mechanisms and
modes of degradation are irrelevant for basic BMS
functions, and only the performance metrics are
needed. Yet it has been shown that deeper knowl-

November 30, 2021



Nomenclature

BMS  Battery management system

DTV  Differential thermal voltammetry

DVA  Differential voltage analysis

EIS Electrochemical impedance spectroscopy

EV Electric vehicle

GITT Galvanostatic intermittent titration tech-
nique

GPR  Gaussian process regression

ICA Incremental capacity analysis

LAM Loss of active material

LFP  LiFePOq4

LIB Lithium-ion battery

LLI Loss of lithium inventory

ML Machine learning

NCA  LiNizCoyAl1—z—yO2

NE Negative electrode

NMC LiNizMny,Coi—5—yO2

NN Neural network

OCV  Open circuit voltage

P2D Pseudo-2D

PBM  Physics based model

PE Positive electrode

RNN  Recurrent neural network
RUL  Remaining useful life

SEIL Solid electrolyte interphase
SoC State of charge

SoH State of health

SoP State of power

SPM  Single particle model
SVM  Support vector machine

edge of degradation due to various stress factors can
yield tangible cost benefits by informing advanced
control strategies [17, 18, 19, 20, 21]. Hence the
need to assess degradation at multiple levels.

At the highest level, degradation is characterized
using performance metrics including state of health
(SoH), remaining useful life (RUL), and state of
power (SoP). Metrics capture the effects of capac-
ity and power fade and are most easily observed
by the BMS. As such, they have received the most
attention. State estimation is a highly-researched
field with several mature techniques used to provide
basic diagnostics information about LIB cells such
as state of charge (SoC) in addition to SoH and
SoP [22, 23]. LIB states are ‘backwards-looking’
metrics, however, and RUL is used for degradation
prognostics [24]. Related to RUL is the colloquial
‘knee-point’ observed in capacity fade curves, which
represents the point at which LIB degradation ac-
celerates and renders the cell unsuitable for EV ap-
plications [25, 26].

The evolution of degradation metrics over time
is explained by degradation modes. Commonly re-
ported modes include the loss of lithium inventory
(LLI), and the loss of active material (LAM) at the
postive electrode (PE) or negative electrode (NE),
though stoichiometric drift between the electrodes
and impedance change are also mentioned [12, 27].
LLI and LAM are valuable quantities that have

been shown to accurately evaluate and predict LIB
voltage and degradation behavior [28].

Modes result from degradation mechanisms in
internal cell components, represented in Fig. 3.
Various chemical processes occur in the cell dur-
ing cycling. They are strongly coupled and ex-
perience intricate positive and negative feedback
loops. Both electrodes are subject to fracturing due
to the volumetric strain of repeated lithiation cy-
cles. In the graphite NE, Li ions may be deposited
on the surface instead of intercalating, known as
lithium plating. Solid electrolyte interphase (SEI)
layers exacerbate the situation by forming on the
NE and plated lithium surfaces, trapping lithium
ions and impeding ion movement [27]. While the
PE is less subject to SEI formation and plating, it
is particularly subject to chemistry-specific struc-
tural and chemical change that reduce active ma-
terial. Some mechanisms may be destructive — SEI
decomposition can lead to thermal runaway and
dendrite growth from plated lithium can cause in-
ternal shorting [29]. Detailed knowledge of internal
mechanisms is crucial for ensuring safety and ex-
tending lifetime.

There have been few, if any, attempts to char-
acterize degradation mechanisms, modes, and met-
rics with a single technique in real-time. It has
been suggested that doing so could extend bat-
tery lifetime and reduce costs [27]. Traditional
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Figure 1: Simplicity and characterization ability of various diagnostics techniques for degradation at multiple levels, adapted
from [11]. Research trends are moving towards a unified ML framework located beyond the current state-of-the-art.

techniques to measure degradation often rely on
measurements from ex-situ controlled environments
[30], or physics-based models with high computa-
tional complexity [31]. These methods are infeasi-
ble for real-time estimation. In contrast, ML meth-
ods such as neural networks (NNs), support vector
machines (SVMs), or Gaussian process regression
(GPR) can offer real-time estimation given suffi-
ciently high-quality training data and selection of
an appropriate input signal [32].

1.1. Contributions and Outline

To date, there has not been a critical perspec-
tive assessing ML techniques for characterizing LIB
degradation stress factors, mechanisms, modes, and
metrics. We offer insight into the strengths and
challenges of using ML for non-invasive multi-level
degradation diagnostics. The possibility for a sin-
gle ML technique to uncover degradation at mul-
tiple levels — which we term ‘unified characteriza-
tion’ — is evaluated from a wide range of studies.
This review thus provides the theoretical founda-
tions towards a unified ML-based LIB degradation
diagnostics technique.

The review continues in Section 2, where key re-
view papers on LIB degradation, machine learning
for LIB systems, and their intersection are identified
and their insights discussed. In Section 3, state-of-
the-art techniques for degradation characterization
at all levels are discussed, with particular attention
to ML-based methods. In Section 4, a framework

for unified ML degradation characterization is pro-
posed and assessed. The review is then concluded
in Section 5.

2. Key Reviews on Degradation

Reviews on degradation research are ostensibly
quite disparate. In one category are reviews that
focus on degradation processes and their link to
stress factors or cell chemistry. Others focus on di-
agnosing degradation mechanisms and modes. Still
others focus on SoH and RUL estimation for use
in applications such as EVs or grid services. These
apparently distinct types of reviews are, however,
unified by their praise of ML techniques [33]. This
section aims to examine all types of reviews and
point towards key sources of information, summa-
rized in Table 1.

A multi-level framework for understanding LIB
degradation was first developed no later than 2005
by Vetter et al. [12], in which the mechanisms,
modes, metrics, and stress factors are listed and
described. A decade later, similar processes were
identified in [34] but with greater focus on destruc-
tive failures such as short-circuits and thermal run-
away. In [13], better characterization of degrada-
tion mechanisms is explicitly tied to improved per-
formance and cycle life. The effects of temperature
on degradation, such as low temperature lithium
plating, are summarized in [35]. Multi-level degra-
dation from the material level to system level is
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Figure 2: Summary of LIB cell stress factors and the resultant internal degradation mechanisms and modes leading to observable
performance metrics.

discussed in [15], with consideration of variations
in cell design and fabrication. In [36], a wide range
of chemistry- and electrode-specific mechanisms are
discussed in detail. A consumer’s perspective is pre-
sented in [37], providing helpful recommendations
based on academic results.

Diagnostics techniques for degradation mecha-
nisms and modes are well-documented. Tradition-
ally imaging and chemical analysis techniques such
as microscopy and spectroscopy are used to exper-
imentally verify degradation mechanisms [27, 30],
but cannot be performed in a BMS. Model-based
methods for mechanisms have potential for real-
time use, but still have high complexity. Mod-
els for SEI formation, crack growth, and LAM
are reviewed in [31].  Lithium-plating is com-
prehensively reviewed in [38], including imaging
and model-based methods, with applications in
fast charging. A general review of LIB system
faults, including degradation mechanisms, is given
in [29]. Diagnostics for degradation modes are re-
viewed in [39, 28, 40|, where non-invasive tech-
niques are discussed in detail, including electro-
chemical impedance spectroscopy (EIS), incremen-
tal capacity analysis (ICA), differential voltage
analysis (DVA), galvanostatic intermittent titration
(GITT), and pulsing. These characterization meth-
ods may also provide qualitative information on un-
derlying mechanisms.

Reviews focusing on SoH and RUL estimation are
perhaps the most mature and share similar method-
ologies. Some focus only on SoH [41, 42], others
on RUL prognostics [24], while [16] and [43] ex-
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amine both. There is general consensus that ML
combined with novel sensing techniques, in contrast
with model-based estimation, can offer superior ac-
curacy and speed [16, 23, 41, 44], and indeed several
studies focus entirely on ML methods [10, 32].

Berecibar et al. [41] predicted in 2016 that ML-
based detection of degradation would dominate in
the future. More recently, [32] and [33] concisely
summarize the uses of ML as: (1) Accurate charac-
terization of degradation across multiple levels, (2)
Simulation of high-quality datasets, and (3) Accel-
erated computations. Data generation and acceler-
ated computations for battery design are reviewed
in [45, 46, 47], but multi-level degradation charac-
terization is only partially addressed — a gap this
review aims to fill.

3. State-of-the-Art in Degradation Research

Recent advances in ML-based degradation char-
acterization are reviewed here with respect to stress
factors, mechanisms, modes, and metrics. We
do not provide a thorough technical description,
rather, we aim to evaluate the benefits, challenges,
and wider potential of using ML compared to tra-
ditional methods.

3.1. Stress factors

LIB systems are sensitive to extremes - high and
low temperatures, high and low voltages or SoC,
and high C-rates. During use, stress factors can
often be mitigated by the BMS through thermal
management, cycling protocols, and charging limits
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Figure 3: Exaggerated diagram of degradation mechanisms at the negative electrode (NE) and postive electrode (PE) within
LIB cells, representing solid electrolyte interphase (SEI) formation, lithium plating, transition metal (TM) dissolution, gas

formation, lattice distortion, and particle fracture/cracking.

[8]. Precise knowledge and quantification of the ef-
fects of certain stresses on battery lifetime remains
a challenge. Knowing the most significant stressor
could inform more targeted BMS strategies to ex-
tend lifetime [26, 48, 49, 50, 51, 52].

One approach to stressor analysis requires the de-
sign of specific cycling protocols. Long-term cycling
is performed in [49] for commercial NCA cells sub-
jected to various regimes of cycling and rest — cyclic
and calendar aging — at a range of C-rates. It is
experimentally confirmed that high C-rates induce
path dependence. From EIS, ICA, and DVA, the se-
quence of the cycling and rest regimes is shown to
alter capacity fade by inciting certain degradation
mechanisms. Large datasets are also used in [48]
to examine the effects of a wide range of tempera-
tures, SoC ranges, and C-rates on NMC, LFP, and
NCA cells. Degradation is shown to be chemistry-
dependent: stress factors do not affect different cells
in the same way.

Feature selection, a form of unsupervised ML,
can offer automated insight into the most important
stressors without specific cycling protocols. This
may reinforce existing knowledge, as shown in [26],
where various cycling features are ranked for their
ability to predict RUL. Feature coupling can lead to
misleading conclusions if not interpreted correctly
— mid-range SoC cycling was the most important
feature, which may appear to contradict prior re-

sults, but [26] explain that this was highly corre-
lated with cycling at low and high SoC levels, which
is known to exacerbate degradation. Stressor rank-
ing is also performed in [50] with random forests to
examine the effects of temperature, charging and
discharging rates, cut-off current, and SoC levels.
Consideration of coupling between stressors shows
that high temperature and discharge currents had
the highest importance. Features are also selected
in [51] and [52] for SoH estimation using ML, where
up to 30 voltage, current, and temperature features
extracted from cycling data or charging curves are
considered. Analysis of the most important features
could reduce the large data processing requirements
inherent in these techniques.

3.2. Mechanisms

Diagnosing degradation mechanisms is a complex
task, requiring either destructive post-mortem anal-
ysis or non-invasive diagnostics. Both methods are
used in [53] to examine the effects of extreme low
temperature and SoC. Lithium plating is verified
as the primary mechanism using qualitative obser-
vations. Practical applications, however, would re-
quire a more detailed quantitative understanding
of mechanisms. This can be addressed with ML
methods, as proposed in [54, 55, 56, 57].

Post-mortem analyses are performed in [54] and
[65]. X-ray spectroscopy and tomography were



Table 1: Summary of key review papers related to LIB degradation (deg.) and machine learning. ‘Multi-level’ papers consider

stress factors, mechanisms (mech.), modes, and metrics.

Review paper

Levels

Focus

Key insight

X. Chen et al., 2021 [33]
Woody et al., 2020 [37]

Han et al., 2019 [15]
Kabir et al., 2017 [13]

Hendricks et al., 2015 [34]
Vetter et al., 2005 [12]

Edge et al., 2021 [27]

X. Lin et al., 2021 [38]

X. Hu et al., 2020 [29]

Pender et al., 2020 [36]
Happuarachchi et al., 2018 [30]
Rodrigues et al., 2017 [35]
Reniers et al., 2019 [31]

Xiong et al., 2020 [39]
Pastor-Fernandez et al., 2019 [28]
Barai et al., 2019 [40]
Berecibar et al., 2016 [41]

Sui et al., 2021 [10]

Ng et al., 2020 [32]

X. Hu et al., 2020 [24]

Wu et al., 2020 [44]
X. Hu et al., 2019 [23]
Y. Li et al., 2019 [16]
Lipu et al., 2018 [43]

Xiong et al., 2018 [42]

Multi-level
Multi-level

Multi-level
Multi-level

Multi-level
Multi-level

Mech.

Mech.

Mech.

Mech.

Mech.

Mech.

Mech., modes
Modes

Modes

Modes, metrics
Modes, metrics
Metrics
Metrics

Metrics

Metrics
Metrics
Metrics
Metrics

Metrics

General
Extending life-
time

General

General

General
General

General
Lithium plating
Fault diagnosis
Electrode chem-
istry effects
Anode diagnos-
tics
Temperature ef-
fects

Deg. models
Diagnostics
Diagnostics
Diagnostics
General

SoH estimation
SoH estimation
RUL estimation
Data-driven di-
agnostics
General
Data-driven di-
agnostics

General

SoH estimation

ML can be applied to LIB for multi-level
applications

Deg.-informed changes in consumer be-
havior can extend LIB life

Cell design and fabrication affect deg.
Better degradation diagnostics improves
performance and cycle life

Destructive failures linked to deg. mech.
First to create framework for multi-level
deg.

A unified deg. mech model capturing
coupling and feedback would be a major
achievement

Pulse charging may reduce Li plating
Fast and accurate sensing can improve
LIB systems
Different mech.
of electrodes
In-situ techniques are not easily applied
to commercial cells

Temperature plays a large role on deg.
mech.

Multiple deg. models should be used for
higher accuracy

Advanced ECM can yield real-time diag-
nostics

Pseudo-OCV and IC-DV tests are the
most promising

Pulse injection and EIS are a good com-
bination

ML can characterize degradation at mul-
tiple length levels
Non-probabilistic ML
highly promising

ML can accurately degradation across
multiple length levels

Model-based techniques can yield RUL
and deg. modes without time-consuming
aging tests

Cloud-based ‘digital twins’ will use big
data and ML for multi-level diagnostics
Big data and ML will be used for multi-
level diagnostics

Differential analysis with ML is promis-
ing for multi-level deg. analysis
Data-driven diagnostics is more robust
than model-based but requires big data
Big data and the cloud will be used to
model performance

occur in different types

techniques are




combined with NN-based classification in [54] to
quantitatively observe and analyze NMC cathode
particles. Several microscale parameters such as
particle size, detachment, and conductivity are di-
rectly measured, and their behavior evaluated un-
der cycling at different C-rates. Using ML is shown
to greatly aid data segmentation and computation.
Similar methods are used in [55] also for NMC cath-
ode particles, focusing on how particle cracking due
to the strain of repeated lithiation cycles can affect
Li ion transport and reaction kinetics. X-ray spec-
troscopy and NN-classification reveal the regions
and degree of strain. Both [54] and [55] offer a valu-
able ML framework for obtaining a highly-accurate
and detailed understanding of degradation mecha-
nisms.

Alternatives to post-mortem analysis are pre-
sented in [56] and [57] with a focus on SEI forma-
tion and lithium plating. Non-invasive techniques
such as EIS, ICA, and GITT can track the effects
of the SEI, but ML could be used to obtain more
detailed information about SEI structure by accel-
erating physics-based models (PBMs). A ‘gener-
ative deep learning’ framework proposed by [56]
thus uses large amounts of data about SEI forma-
tion to predict SEI behavior in arbitrary scenarios;
it is conceivable this could be extended to other
degradation mechanisms. A more focused approach
could focus on electrochemical signatures left by the
mechanisms. By fabricating two types of cells with
pre-determined susceptibility to SEI or plating, [57]
confirm that the mechanisms are easily distinguish-
able using non-invasive diagnostics. This is promis-
ing for ML methods that can analyze more subtle
signatures in commercial cells.

3.3. Modes

Degradation modes have attracted attention for
their ease of observability compared to mechanisms,
and the widespread use of half-cell open-circuit
voltage (OCV) models that parametrize LLI and
LAM. This can largely be attributed to Dubarry et
al., [58, 59, 60, 61], who developed the ‘Alawa’ tool-
box for simulating degradation modes. Their work
has been experimentally validated by [14] and ex-
tended by [62, 63, 64, 65]. Much of the conclusions
are drawn from ICA and DVA curves, whose peak
widths and locations are highly sensitive to LLI and
LAM. NN regression can be used to bypass param-
eter identification, as shown in [65, 66], which can
facilitate real-time implementation.

Alternative methods to parametrize LLI and
LAM are derived from PBM parameters [67, 68, 69].
A single-particle model (SPM) is used in [67] to es-
timate OCV and obtain modes. In [68], a pseudo-
2D (P2D) model is used to track LAM, diffusivity,
and the reaction constant in LIB cells. SPM, P2D,
and an ‘improved’ SPM are compared in [69], where
LLI and LAM are directly calculated from the PBM
parameters. Diffusivity is an important measure of
impedance change in [68] and [69] that can be linked
to particle fracture and SEI formation. PBM pa-
rameters have high computational complexity that
could be addressed using ML.

EIS is important diagnostics tool, but is mainly
used for qualitative analysis of degradation. It
is suggested in [70] that equivalent-circuit model
(ECM) parameters from EIS diagnostics are highly
correlated with LLI, particularly the charge-
transfer and diffusion elements. The acceleration
in degradation beyond the knee-point is attributed
to LLI. This conflicts with Dubarry et al., 2012
[61], who describe two regimes of degradation: a
linear regime where LAM ‘incubates’ and LLI dom-
inates, then rapid capacity loss as LAM dominates.
Still more conflicting interpretations are given in
[71, 72], where ECM parameters are made directly
proportional degradation modes; resistances are
linked to LLI, while diffusion is linked to LAM.
Since ECM parameters are inherently simplifica-
tions of internal processes in the cell, they likely
capture coupled effects of LLI and LAM. While
the evolution of electrochemically-defined ECM pa-
rameters can provide qualitative understanding of
degradation [73], it remains unclear how accurately
they can quantify degradation modes.

More recently, temperature methods have gained
attention for characterizing degradation modes. It
is shown in [74] that temperature differentials be-
tween the electrodes induces unique modes com-
pared to ordinary operation; the colder electrode
becomes more susceptible to degradation. Differ-
ential thermal voltammetry (DTV) concepts intro-
duced in [75] are extended in [11], who parametrize
LLI and LAM in a combined OCV-heat-transfer
model. Using constant current charging, the degra-
dation modes can be estimated. If accurate ther-
mal measurements can be achieved in real LIB pack
configurations then temperature methods could of-
fer significant value to diagnostics.
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Figure 4: Proposed unified machine learning framework for diagnostics and prognostics of degradation mechanisms, modes,

and metrics

3.4. Metrics

More studies use ML for SoH/RUL estimation
than for any other level of degradation. Other data-
driven techniques have demonstrated high perfor-
mance but ML estimation has shown greater gen-
erality in addition to high accuracy [76, 77]. The
various ML tools have important discrepancies, as
explained in [10], but characterization frameworks
are more broadly divided by the input data type.
There are three types of datasets used for ML train-
ing: (1) Cycling data, such as voltage, current, and
temperature, (2) Charging or discharging voltage
curves, and (3) Specific diagnostics signals. Cycling
data maximizes the amount of knowledge, and is of-
ten used for RUL prognostics. Charging curves can
reduce the ML complexity by limiting the amount
of data. Using specific diagnostics signals is a min-
imalist approach that can offer the highest general-
ity with the lowest complexity. A framework com-
bining all data types is offered in [78] using the con-
cept of a cloud-based ‘digital twin’ that is created
for each cell with beginning-of-life characterization
tests and continuously updated with cycling data.
Until real-time computational power can meet the
demands of a cloud-based solution, careful selection

of input data will still be required.

Using as much cycling data as possible has
yielded highly accurate diagnostics and prognostics
of LIB degradation. Earlier studies like [79, 80] es-
timate SoH and RUL using NNs and SVMs. Op-
timizing NN performance is performed with data-
driven weight initialization [81] or adaptive dropout
[82]. Other studies use GPR [83, 84, 85, 86,
and it is shown in [87] that a similar concept can
be used to create a high-fidelity OCV model for
SoH prediction. Manual feature selection and pro-
cessing in these studies is a contribution perhaps
equally as valuable as the estimation framework it-
self. Automated feature selection, as noted in Sub-
section 3.1, is used to create a ‘pipeline’ from cy-
cling data collection to SoH/RUL prediction us-
ing a variety of ML methods for the same pur-
pose [26, 52, 88, 89, 90]. Early RUL prediction
has become a popular subject, driven in part due
to the success of Severson et al. [91] in predicting
LIB lifetime primarily from the constant-discharge
voltage curves of the first 100 cycles. This is im-
proved in [92] with evaluation of a wide range of
ML techniques for prediction and feature selection
to achieve higher accuracy.



Limiting the amount of input data for obtaining
metrics can simplify model complexity and facili-
tate practical implementation. Charging and dis-
charging curves are thus popular data types; in-
formation from ICA and DVA are encoded within.
Early prediction of RUL is performed in [93] with
the discharge voltage of one cycle input to a convo-
lutional NN, though error increases rapidly if per-
formed too early in the cell’s lifetime. Features
from conventional charging cycles are used in [94]
for diagnosing SoH with GPR. Partial charging or
discharging curves, meanwhile, are particularly at-
tractive since full cycles may not be consistently
available. Data from a 25% SoC window is used in
[95] and [96] to predict SoH using GPR and SVM.
A range of SoC windows are examined in [97] using
GPR and in [98] using the ‘NARX’ NN, where it is
shown that width of the SoC range affects accuracy
more than the position. Thus partial cycling curves
trade estimation accuracy for speed.

The most minimalist of ML approaches use spe-
cific diagnostics signals. No feature selection or
prior history are required, simplifying diagnostics
and granting greater flexibility. A vast number of
EIS spectra are shown in [99] to provide highly ac-
curate predictions of RUL using GPR. EIS cannot
be performed in real-time, but estimation using a
single GITT-type pulse demonstrates fast and ac-
curate estimation using a NN [100, 101, 102]. Since
a rectangle current pulse stimulates the LIB cell at
a wide range of frequencies, similar to galvanostatic
EIS, pulse injection could offer similarly high per-
formance in ML diagnostics.

4. Unified Machine-Learning Characteriza-
tion

Degradation characterization is gradually ex-
tracting more information in shorter time periods
to improve performance and extend LIB lifetime.
The ‘holy grail’ of perfect real-time simulation of
internal degradation mechanisms remains a difficult
computational task for the near future. Existing re-
search, however, suggests that the past and future
degradation mechanisms, modes, and metrics of a
LIB cell could be diagnosed with machine learning
in a matter of minutes. We offer a possible frame-
work and perceived bottlenecks for achieving this
goal.

4.1. Proposed framework

Our unified framework for degradation character-
ization is shown in Fig. 4. As in most ML frame-
works, there is an offline regime requiring large
amounts of training data, computational resources,
and model validation. During cycling, the cell is ex-
posed to a wide range of stress factors and pulses are
applied along with conventional LIB health tests
such as pseudo-OCV capacity checks. State-of-the-
art techniques should be used to characterize the
cell as it ages to generate the target data. Af-
ter supervised training, We hypothesize that ML
can then extract the same information from puls-
ing data, thus ‘bypassing’ more complex character-
ization performed offline. This concept has already
explored as pulse-injection-aided machine learning
(PIAML) [101].

Pulse injection, a generalization of hybrid pulse
power characterization, is a promising source of in-
put data [103]. From a control theory perspec-
tive, LIB systems can be completely character-
ized by their transient and steady state behav-
ior. The transient response is determined by elec-
trochemical overpotentials and analyzed with ma-
ture techniques such as EIS, GITT, and pulsing
[104, 105, 106]. The steady-state response is deter-
mined by the OCV characteristic and analyzed with
ICA, DVA, and DTV. It would seem that both over-
potentials and OCV are equally necessary for char-
acterizing degradation; the studies reviewed earlier
suggest otherwise. Knowing the full LIB OCV char-
acteristic is not necessary to obtain accurate degra-
dation metrics [95, 96, 97, 98]. Furthermore, certain
SoC levels seem to ‘encode’ more information than
others [68, 99, 103], a conclusion supported by ICA
graphs. Thus it is conceivable that pulse injection
at a carefully-selected SoC level could encode suffi-
cient degradation information to train a NN.

4.2. Outlook

Degradation metrics and modes are readily ob-
tained from existing methods; there is no con-
sensus over the most effective. Mechanisms re-
main the most difficult to characterize and are fit-
tingly the most active research area. ML-assisted
microscopy/spectroscopy techniques have demon-
strated high potential [54, 55] in quantifying the
extent of mechanisms like SEI formation, lithium
plating, particle cracking, and lattice distortion. It
is likely that novel sensing techniques using acous-
tics, strain, or optics will be developed to allow



analysis to be performed in-situ, instead of post-
mortem. Advances in computational power could
also facilitate the implementation of high-fidelity
PBMs.

Characterizing degradation with high accuracy
and resolution over a cell’s lifetime could open new
opportunities in battery management. The effects
of stress factors on degradation would be precisely
understood, which would benefit applications like
fast charging [20] or vehicle-to-grid applications
[17].

5. Conclusion

LIB degradation research at multiple levels was
reviewed with particular attention paid to the role
of ML. Characterizing the stress factors, mecha-
nisms, modes, and metrics of degradation is a com-
plex task with most research directed towards a sin-
gle aspect. We identify several similarities between
the characterization methods and hypothesize that
a single ML technique can be used to provide a uni-
fied understanding of LIB degradation. This frame-
work would use pulse injection as a diagnostics sig-
nal, allowing ML to quickly bypass traditional time-
consuming characterization techniques.

Further work is needed to quantify the degrada-
tion mechanisms in LIB cells using non-destructive
techniques. Novel sensing technologies are already
being proposed and the continued increase in com-
putation power could facilitate the implementation
of high-fidelity PBMs in the cloud. Battery degra-
dation is a crucial factor in determining the tech-
nical and economic feasibility of LIB systems and
will remain an active research field for the years to
come.
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