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Abstract 

Battery State-of-Charge Estimation Using Neural Networks 

Chenyao Liao 

 

 This thesis proposes a way to augment the existing machine learning algorithm applied to 

state-of-charge estimation by introducing a form of pulse injection to the running battery cells. It 

is believed that the information contained in the pulse responses can be interpreted by a machine 

learning algorithm whereas other techniques are difficult to decode due to the nonlinearity. OCV 

Mapping is also applied in order to evaluate and compare the performances with feedforward 

neural network (FNN) -based approach. Coulomb-counting is selected as the basis of making 

comparison as it is capable of obtaining the SoC with an error less than 0.1%. The detailed 

system layout is given to perform the augmented SoC estimation integrated in a real-world 

testbench. Testing procedures specifically designed for both OCV Mapping and FNN-based 

approach are also explained and provided. A 2-hidden layer FNN is trained to acquire the 

nonlinear relationship between the training pulse and the ground-truth SoC. The experimental 

data is trained and the results are shown within 6-8mins computation time and an error boundary 

of 1.13% for charge and 0.80% for discharge, whereas OCV Mapping has approximately 3.35% 

SoC estimation error for charge and 1.86% for discharge even after 90 minutes relaxation.  

 



i 
 

Table of Contents 

 
List of Graphs ................................................................................................................................ iii 

List of Charts .................................................................................................................................. vi 

Acknowledgments ......................................................................................................................... vii 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Development of Electric Vehicles ........................................................................................ 1 

1.2 Motivation ............................................................................................................................. 3 

Chapter 2: SoC Estimation Techniques .......................................................................................... 7 

2.1 Open Circuit Voltage (OCV) Mapping ................................................................................. 7 

2.2 Coulomb-Counting ............................................................................................................. 10 

2.3 Model-based Observer ........................................................................................................ 13 

2.4 Data-driven Methods .......................................................................................................... 18 

2.5 Impedance-based Methods .................................................................................................. 19 

Chapter 3: System Set-up .............................................................................................................. 21 

3.1 Test by the Cycler ............................................................................................................... 22 

3.2 Testbench Intro ................................................................................................................... 25 

3.2.1 Battery Balancing Circuit ................................................................................................ 27 

3.2.2 Lower-level Controller ..................................................................................................... 29 

3.2.3 Higher-level controller (BeagleBone Black) ................................................................... 32 

3.3 SoC Estimation in Real-Time System ................................................................................ 33 

3.3.1 Pulse Injection Module and Measurements Update Module ........................................... 34 



ii 
 

3.3.2 SoC Estimation Module ................................................................................................... 35 

3.3.3 Machine Learning Update Module .................................................................................. 37 

Chapter 4: Experimental Results .................................................................................................. 40 

4.1 OCV-SoC curves ................................................................................................................ 40 

4.2 Performance of OCV Mapping ........................................................................................... 42 

4.3 Training for Machine Learning Model ............................................................................... 48 

4.4 Input of Machine Learning Model ...................................................................................... 49 

4.5 SoC Calculation in BeagleBone Black ............................................................................... 50 

4.6 Comparison between OCV Mapping and Machine Learning-based method ..................... 51 

Conclusion .................................................................................................................................... 55 

References ..................................................................................................................................... 56 

Appendix A ................................................................................................................................... 63 

Appendix B ................................................................................................................................... 64 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

 

 

List of Graphs 

Figure 1: The projection of increasing EV market share.  .............................................................. 2 

Figure 2: EV annual passenger car and light duty vehicle sales in major regions. ......................... 3 

Figure 3: Overview of Battery Management System (BMS). ........................................................ 5 

Figure 4: OCV-SoC Curve dependency of temperature. ................................................................ 8 

Figure 5: OCV-SoC Curve dependency of aging status. ................................................................ 9 

Figure 6: Different OCV-SoC Curves when charging and discharging. ...................................... 10 

Figure 7: Coulomb-counting with current sensor bias. ................................................................. 12 

Figure 8: Improved Coulomb-counting to avoid the estimated SoC drift away. .......................... 13 

Figure 9: Diagram of linear discrete-time system in state-space form. ........................................ 15 

Figure 10: Diagram of nonlinear discrete-time system in state-space form. ................................ 17 

Figure 11: Working principle of data-driven methods. ................................................................ 19 

Figure 12: Impedance characteristic at different aging status. ..................................................... 20 

Figure 13: Flowchart of the project. ............................................................................................. 21 

Figure 14: Photo of the cycler. ...................................................................................................... 22 

Figure 15: Error of SoC estimation at different current pulse amplitude. .................................... 24 

Figure 16: 1 C-rate pulse current plot. .......................................................................................... 24 



iv 
 

Figure 17: Entire testing procedure by battery cycler: (a) the Flowchart, (b) Complete test 

sequence captured by the cycler. .................................................................................................. 25 

Figure 18: Photo of the real-world testbench. ............................................................................... 26 

Figure 19: Photo of the Lithium-ion rechargeable batteries. ........................................................ 27 

Figure 20: Topology of the battery balancing circuit. .................................................................. 28 

Figure 21: Photo of battery balancing circuit. .............................................................................. 29 

Figure 22: Photo of TI controller. ................................................................................................. 30 

Figure 23: Control strategies in the microcontroller. .................................................................... 30 

Figure 24: Photo of BeagleBone Black. ....................................................................................... 33 

Figure 25: Diagram of the system. ................................................................................................ 34 

Figure 26: Machine learning approach implemented with UDDS driving cycle. ........................ 36 

Figure 27: Three SoC Estimation techniques implemented in charging. ..................................... 37 

Figure 28: Diagram of the 2-hidden-layer neural network. .......................................................... 38 

Figure 29: Flowchart of SoC calculation by 2-hidden-layer neural network. .............................. 39 

Figure 30: OCV-SoC curve under charging. ................................................................................ 41 

Figure 31: OCV-SoC curve under discharging. ............................................................................ 42 

Figure 32: Experimental results of OCV Mapping under charging. ............................................. 43 

Figure 33: Experimental results of OCV Mapping under discharging. ........................................ 44 

Figure 34: Currents, Voltages and SoCs during charging. ........................................................... 45 

Figure 35: Currents, Voltages and SoCs during discharging. ....................................................... 46 

Figure 36: Error of OCV Mapping versus. Relax Time when charging. ...................................... 47 

Figure 37: Error of OCV Mapping versus. Relax Time when discharging. ................................. 48 



v 
 

Figure 38: Sample Inputs for machine learning model, including voltage responses from both 

charge and discharge. .................................................................................................................... 50 

Figure 39: Comparison between OCV Mapping and machine learning-based approach during 

charging. ........................................................................................................................................ 52 

Figure 40: Comparison between OCV Mapping and machine learning-based approach during 

discharging. ................................................................................................................................... 53 

Figure 41: Average Error of OCV Mapping and machine learning-based approach at each SoC 

level during charge. ....................................................................................................................... 54 

Figure 42: Average Error of OCV Mapping and machine learning-based approach at each SoC 

level during discharge. .................................................................................................................. 54 

Figure 43: Average Error of OCV Mapping and machine learning-based approach at each SoC 

level for both charge and discharge. ............................................................................................. 63 

Figure 44: Sample inputs at 30% SoC. ......................................................................................... 64 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

 

 

 

 

 

 

 

 

List of Charts 

Table 1: Controlling factors and parameters of the battery. ......................................................... 31 

Table 2: Coefficient arrays of charging and discharging OCV-SoC curves. ................................ 40 

 

 

 

 

 

 

 

 

 



vii 
 

 

 

 

Acknowledgments 

 I would like to thank Professor Matthias Preindl for his guidance and continuous support 

through each stage of the process, for sharing the access to his GPU, which saved me a lot of 

time on the training of FNNs, for giving me the opportunity to join MPLab, inspiring my interest 

in BMS technologies and always be kind and encouraging.  

 My sincere thanks also go to PhD candidate Weizhong Wang, who was instrumental in 

defining the path of my research and provided insight and expertise that greatly assisted the 

research. I would also like to thank my research partner, Youssef Amr Fahmy, for constructing 

the FNN and sharing his illuminating views on a number of issues related to the project.  

 Without they precious support it would not be possible to conduct this research.  

 



1 
 

Chapter 1: Introduction 

1.1 Development of Electric Vehicles 

Due to the environmental impact of the petroleum-based transportation infrastructure and 

the development of renewable energy, the electric transportation infrastructure has seen its 

resurgence for last decades. Electric vehicles (EVs) are considered as Green and environmental-

friendly as the electric power that it consumes can be generated from a wide range of sources, 

such as fossil fuels, nuclear power and various kinds of renewable energy. This would heavily 

cut the fuel consumption and gas emission, also would reinforce the secure level of energy usage 

via geographic diversification of the available energy sources. (Eberle and Helmolt, 2010) 

The development of electric vehicle has a long history. (Situ, 2009; Chan, 2002) The first 

EV debuted in U.S. as early as 1890s, which was regarded as one of the earliest automobiles and 

its development was way ahead of combustion engine from late 1920s to 1930s. Inherited from 

horse carriages, it was the major transportation tool of the time that widely used in the society 

and playing a vital role in land transportation However, the development of EV is full of 

obstructions. From 1930s, the market was overtaken by gasoline vehicles, which can be mass 

produced at a lower cost. Petrol also became a cheap power source for transportation with new 

technologies. Since then, the gas-powered vehicles surpassed EV both in performance and cost, 

the production and development of EV came to a halt.  

Not until the last decade did EV see its revival with a great exponentially increasing deal 

of demand. According to data from International Energy Agency, the amount of global new 

electric cars sales grows from 2.24 thousand in 2008 to 1.98 million in 2018. Experts believes 

the demand of EV is still growing. Deloitte, a famous auditing and consulting company, 

estimated this number would double to 4 million in 2020 and become 21 million in 2030 
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(Woodward, 2018). The outlook for annual global EV sales, along with projections from 2018-

2030 is shown in Fig. 1, as well as the market share of EV.  

 

Figure 1: The projection of increasing EV market share. 1 

Policies and regulations play a critical role in the emerging market. Most of major 

countries set emissions targets and plan to replace gasoline and diesel vehicles with EV. EU, for 

example, should raise EV share to 10 percent by 2025 in order to meet its own carbon dioxide 

emission target. Incentive policies are adopted to encourage purchase of EV, including 

government subsidies and tax exemptions, which promote EV sales in multiple regions. Fig. 2 

illustrates EV annual passenger car and light duty vehicle sales in major regions. 

 

 
1 Data from International Energy Agency (IEA), IHS, Deloitte analysis (2018). 
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Figure 2: EV annual passenger car and light duty vehicle sales in major regions.2 

In addition to the government incentives, consumers are important factor in EV market. 

With a raising awareness of protecting environment, EVs meet the demand of consumers with 

green energy and lower noise during driving. The consumers are expecting more advanced 

battery technologies, which would greatly increase driving range of EV as well as fasten the 

speed of charging batteries. With the development of new techniques, customers would more and 

more turn to EV instead of gasoline vehicles. 

1.2 Motivation 

There are three main categories of electric vehicles (EVs) (Carley, 2014), classified by 

sources they apply. (1) BEVs, or battery electric vehicles are vehicles that only use rechargeable 

batteries as power supply. (2) HEVs, or hybrid electric vehicles use both electric power and 

gasoline. (3) PHEVs of plug-in hybrid electric vehicles, also use electric power and gasoline, 

 
2 Data from International Energy Agency (IEA), HIS (2018). 
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while it has an external electrical power source. All of them mentioned above are more or less 

powered by battery packs.  

The battery, as a crucial core element of electric vehicles, its development has also been 

renewed. Lithium-ion batteries (LiB) have a promising future in this realm due to its high energy 

density, long cyclability and low self-discharge rate characteristics. (Dunn et al., 2011; Li et al., 

2019) The high energy density allows the Lithium-ion batteries to store six times of energy as 

can be stored in Lead acid battery. Additionally, over a thousand of charge/discharge cycles can 

be handled by LiB, whereas the Lead acid battery is only able to handle less than 500 cycles. 

Furthermore, the charge loss of LiB is as low as 5% per month, while the Nickel–Metal Hydride 

(NIMH) battery has a 20% charge loss per month. The development of EVs, UPS, mobile phone 

and smart grid therefore have heavy dependence on LiB technology (Zaghib et al., 2015).  

The motivation of this thesis basically arises from the real-world EV applications. In the 

development of EV, safety issues are undoubtedly a top priority, especially the safety of battery 

pack. In order to make sure the battery packs are in a healthy state when the EV is driving, it is 

necessary to monitor some key characteristics that could represent the health status of the 

battery. For instance, a moving EV stops at a red light, those characteristics are expected to be 

obtained during this stop period. A battery management system (BMS) functions as a system that 

take care of the battery packs by monitoring their states, meanwhile, communicate with other 

onboard subsystems, as depicted in Fig. 3.  
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Figure 3: Overview of Battery Management System (BMS).  

The purpose of the battery management system is to control and charge the battery pack, 

provide overvoltage or undervoltage protection, as well as communicate with onboard 

peripherals. It contains the battery charger, switch circuit, DC/DC converter, etc. The cell 

balancer module is used to control the batteries in the battery pack in order to realize battery 

balancing, voltage protection module can set the upper- and lower-bound limit for battery to 

prevent the battery from being overcharged or undercharged. (Cheng et al., 2011; Rahimi et al., 

2013; Brandl et al., 2012) 

Here are three typical features that are essential to battery management system: (1) State 

of Charge (SoC) is a percentage value that is generally used as a metric to quantify the amount of 

energy left in a battery compared with the energy it had when it was originally full. When SoC 

equals to 100%, it means the battery is now fully charged; and 0% SoC represents an empty 

battery. And SoC also indicates that how long a battery will continue to perform before it needs 

recharging. (2) State of Power (SoP) is the ratio of peak power to nominal power. The peak 

power is the maximum power that a battery can persistently provide for T seconds under the 

designed current, voltage, SoC and other power constraints (Shun et al., 2018). (3) State of 
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Health (SOH) is defined as the level of degradation of the battery due to the aging phenomena. 

(Remmlinger et al., 2011) 

This thesis mainly focuses on the estimation of battery SoC, and compared the 

performances between different SoC estimation approaches. In the first Chapter of this work, the 

history and prospects of electric vehicles and the motivation of this project are introduced. Five 

categories of typically SoC estimation techniques including open-circuit voltage (OCV) 

mapping, coulomb-counting, model-based observers, data-driven methods and impedance-based 

methods, as well as their pros and cons are discussed in Chapter 2. In Chapter 3, the structure 

and principles of the testbench are explained. The testing procedure and experimental results 

using coulomb-counting, OCV mapping and machine learning model-based method captured by 

real-time battery testing system are summarized in Chapter 4.  
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Chapter 2: SoC Estimation Techniques 

SoC is defined as the currently available capacity in a battery divided by its nominal 

capacity. An accurate SoC estimation plays a critical role in a reliable battery management 

system. Unlike the fuel level in traditional combustion engine vehicles, the SoC cannot be 

directly measured in EV applications. However, SoC is internally linked with direct 

measurement (voltage, current, temperature and capacity) and can be extracted by using battery 

intrinsic relations or control theory. (Lee et al., 2008; Pang et al., 2001; Piller et al., 2001) Five 

typical methods have been proposed to estimate the SoC in lithium-ion batteries in this chapter. 

2.1 Open Circuit Voltage (OCV) Mapping 

Open circuit voltage (OCV) is a parameter that projects the changes in electric energy of 

lithium-ion batteries. It can be used to estimate battery SoC, as well as manage the battery pack. 

The most straightforward method to estimate SoC is mapping the OCV to SoC, as a one-to-one 

translation can be found between SoC and OCV under certain conditions. The translation is a 

nonlinear monotone relationship and ought to be general enough for representing different types 

of Lithium-ion battery, even when battery aging and temperature change happen.  

The OCV-SoC curve can be generated by slowly charging/discharging the battery via a 

high-precision cycler that can largely avoid the effect of internal resistance. The cycler is able to 

save the measurements (voltages, currents) during the test, from which OCV and SoC are 

extracted and plotted as the OCV-SoC curve for OCV mapping. For simple SoC calculation, a 

curve fitting is usually applied to convert the test data into some fitting data that could be 

expressed as a polynomial, then the SoC could be calculated with the polynomial model. 

Given a specific OCV, the corresponding SoC can be accurately interpreted if the 

measured condition matches the one where the OCV-SoC map is acquired. In other words, the 
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OCV-SoC map varies with testing conditions, such as temperature and aging status, which 

introduce a significant amount of variability and can bias the SoC estimation (Chemali et al., 

2016; Waag et al., 2014; Baronti et al., 2011). Different OCV-SoC curves at different 

temperatures are depicted in Fig. 4, the average error between each curve at 3.29V is 9%. OCV-

SoC relation with aging effect is shown in Fig. 5, the largest error between the fresh cell and the 

aged cell is 7%. 

 

Figure 4: OCV-SoC Curve dependency of temperature.3 

 
3 Data from Elabadine et al. A Novel Hybrid Technique to Predict the Lithium-Ion Battery’s Behavior 

and Estimate the Intern Impedance. International Journal of Emerging Electric Power 
Systems, Jul. 2017.  
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Figure 5: OCV-SoC Curve dependency of aging status.4 

Even the direction of current flow (charging/discharging) will affect the OCV-SoC map 

significantly according to (Roscher et al., 2011). Fig. 6 showcases the different OCV-SoC curves 

when a same battery is under charging and discharging, respectively. If the OCV-SoC curve 

generated from discharge data is used for charging period OCV mapping, the largest error in this 

case is 13%, thus the SoC result would be no longer accurate. 

 
4 Data from Ovejas and Cuadras. State of charge dependency of the overvoltage generated in 

commercial Li-ion cells. Journal of Power Sources. 418. pp.176-185, 2019.  
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Figure 6: Different OCV-SoC Curves when charging and discharging.  

In addition, complete electrochemical equilibrium cannot be achieved within a short time 

frame (Waag et al., 2013). Therefore, while the battery is under load, it is unfeasible to perform 

real-time updates of SoC based on OCV measurements. For these reasons, OCV-based SoC 

estimation is commonly used as a complementary or corrective method running in the 

background (Xiong et al., 2017). 

2.2 Coulomb-Counting 

Coulomb-Counting is one of the simplest approaches to calculate the SoC value. It 

identifies a SoC estimation technique that integrates the battery current, i.e. counts the 

Coulombs. Hence, it can identify an SoC difference after requiring knowledge of an initial SoC 

value, which can be obtained with an OCV-SoC map in a well-known condition. Coulomb- 

counting (or Ah counting) integrates the current passed in/out of the battery with respect to time 

and converts it to the SoC using the following expression: 
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𝑆𝑜𝐶 = 𝑆𝑜𝐶% + h'
𝑖
𝐶
𝑑𝑡 (1) 

where 𝑆𝑜𝐶% is the initial state of SoC; 𝐶	is the present capacity of the cell. The 

charging/discharging efficiency is denoted as h. The current that charges/discharges the battery 

is 𝑖. However, the accuracy of SoC estimation would be compromised if low-res current sensors 

are used or the capacity is not updated as the battery ages (Baronti et al., 2011; Ng et al., 2009; 

Baccouche et al., 2018) as can be seen in Fig. 7. The error in this figure is exaggerated for 

descriptive purpose. A 0.5A bias in current sensor will be accumulated to a 0.17% SoC 

estimation error in 1hr. Particularly, in situations where the SoC cannot be regularly corrected by 

OCV-based methods, the predicted SoC significantly drifts away from the true value and 

misleads other functions in battery management system. As a result, coulomb-counting is 

commonly used in the laboratory environment, where the aforementioned uncertainties can be 

reasonably controlled.  

An improved coulomb-counting technique combined coulomb-counting with a 

periodically OCV correction can also be used in order to control those uncertainties, it is able to 

eliminate the accumulated errors that caused by low-res current sensors. Instead of using 

coulomb-counting to estimate the SoC in the whole driving process, SoC corrections will be 

implemented at periodically time stamps. (i.e. for every 10% SoC drop). As is evident in Fig. 8, 

the significantly drift-away coulomb-counting shown in Fig. 7 is corrected for each 10% SoC, 

the further error accumulation therefore is eliminated. Here, the SoC correction is acquired from 

voltage measurements, based on the battery OCV-SoC curve.  
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Figure 7: Coulomb-counting with current sensor bias. 
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Figure 8: Improved Coulomb-counting to avoid the estimated SoC drift away. 

2.3 Model-based Observer 

 To reduce the uncertainties of the open-loop SoC estimation methods mentioned 

previously, techniques with feedback mechanisms to correct possible bias and real-world 
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electrochemical model. (Lai et al., 2018) Particularly, Kalman-Filter (KF) based technologies has 
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al., 2008; Ahmed et al., 2014; Speltino et al., 2009; Welch and Bishop, 1995; Hua et al., 2012; 

He et al., 2013; Li et al., 2013).  

Kalman-Filter (KF) utilizes linear state-space model, as illustrated in Fig. 9, and 

implements initialization and computation for time update and measurement update, the 

equations of the Kalman filter are summarized as follow: 

state equation:  

𝑥012 = 	𝐴0𝑥0 + 𝐵0𝑢0 + 𝑤0 (2) 

observation equation: 

 

𝑦0 = 	𝐶0𝑥0 + 𝐷0𝑢0 + 𝑣0 (3) 

Initialization: 

𝑥<%1 = 	𝔼[𝑥%] (4) 

A =
1

BC,%
𝔼[(𝑥% − 𝑥<%1)(𝑥% − 𝑥<%1)F]	 (5) 

State estimate time update: 

𝑥<0H 	= 𝐴0H2𝑥<0H21 + 𝐵0H2𝑢0H2 (6) 

Error covariance time update: 

A =
H

BC,0
	𝐴0H2 	A 𝐴0H2F

1

BC,0H2
+ 𝔼[𝑤0𝑤0F] (7) 

Kalman gain matrix: 

𝐿0 =A 𝐶0F[
H

BC,0
𝐶0 	A 𝐶0F +

H

BC,0
𝔼L𝑣𝑘𝑣𝑘𝑇O]H2 (8) 

State estimate measurement update: 

𝑥Q𝑘+ = 𝑥Q𝑘− + 𝐿0[𝑦0 − 𝐶0𝑥Q𝑘− − 𝐷0𝑢0] (9) 
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Error covariance time update: 

A = (𝐼 −
+

𝑥C,𝑘
𝐿𝑘𝐶𝑘)	𝔼[𝑥C0𝑥C0F]H (10) 

where 𝑥0 ∈ ℝW is the state vector at time k, the minimum mean squared error estimate of 

the true state 𝑥0 is denoted as 𝑥<0,	𝑥C0 is the state estimator error that defined as 𝑥0 minus 𝑥<0, 

𝑢0	 ∈ ℝX is a known system input. The vectors 𝑤0 ∈ ℝW and 𝑣0 ∈ ℝY describe independent, 

zero-mean, Gaussian noises that model some unmeasured input which affects state and output of 

the system, respectively. The system output is  𝑦0 ∈ ℝY. The matrices  𝐴0 ∈ ℝW×W,	𝐵0 ∈

ℝW×X,	𝐶0 ∈ ℝY×W and 𝐷0 ∈ ℝY×X represent the dynamics in the system. 

 

Figure 9: Diagram of linear discrete-time system in state-space form. 

The Kalman filter provides a theoretically elegant and time-proven method to filter 

measurements of system input and output to produce an intelligent estimate of a dynamic 

system’s state. The equations involve basic matrix operations that are easy to implement on 

digital-signal-processing (DSP) chips. A side effect of the Kalman filter is that the state 

uncertainty matrix is automatically produced, giving an indication of the error bound on the 

estimate.  
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The Kalman Filter is the optimum state estimator for linear systems, when the system is 

nonlinear, a linearization process is applied on the nonlinear system with a linear time varying 

system (LTV). A nonlinear system block diagram is illustrated in Fig. 10. If the KF is employed 

on this linear time varying system, it means an Extended Kalman Filter (EKF) is used for this 

nonlinear system (Han et al., 2009; He et al., 2011; Kim and Cho, 2011; Plett, 2004; Rubagotti et 

al., 2009; Taborelli and Onori, 2014; Vasebi et al., 2007). The EKF generally works pretty well 

even if itself is not optimal. The functions of EKF are listed below: 

Nonlinear space model: 

𝑥012 = 𝑓(𝑥0, 𝑢0) + 𝑤0 (11) 

𝑦0 = 𝑔(𝑥0, 𝑢0) + 𝑣0 (12) 

Initialization: 

𝑥<%1 = 	𝔼[𝑥%] (13) 

A =
1

BC,%
𝔼[(𝑥% − 𝑥<%1)(𝑥% − 𝑥<%1)F] (14) 

Definition: 

𝐴]0 =
𝜕𝑓(𝑥0, 𝑢0)

𝜕𝑥0
_
B`aB<`

b
(15) 

𝐶]0 =
𝜕𝑔(𝑥0, 𝑢0)

𝜕𝑥0
_
B`aB<`

c
(16) 

State estimate time update: 

𝑥<0H 	= 	𝑓(𝑥<0H21 , 𝑢0H2) (17) 

Error covariance time update: 

A =
H

BC,0
	𝐴]0H2 	A 𝐴]0H2F

1

BC,0H2
+ 𝔼[𝑤0𝑤0F] (18) 

Kalman gain matrix: 
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𝐿0 =A 𝐶]0F[
H

BC,0
𝐶]0 	A 𝐶]0

F +
H

BC,0
𝔼L𝑣𝑘𝑣𝑘𝑇O]H2 (19) 

State estimate measurement update: 

𝑥<01 = 𝑥<0H + 𝐿𝑘L𝑦𝑘 − 𝑔(𝑥<0
H	, 𝑢0)O (20) 

Error covariance time update: 

A = (𝐼 −
+

𝑥C,𝑘
𝐿𝑘𝐶<𝑘)	𝔼[𝑥C0𝑥C0F]H (21) 

where	𝑓(𝑥0, 𝑢0) is a nonlinear state transition function and 𝑔(𝑥0, 𝑢0) is a nonlinear 

measurement function. 

 

Figure 10: Diagram of nonlinear discrete-time system in state-space form. 

Apart from KF, the particle filter and adaptive observer are applied to further improve the 

SoC estimation accuracy (He et al., 2012; Rubio et al., 2014; Zheng et al., 2014; Ning et al., 

2016). 

However, constructing such an observer requires precise system modeling for the specific 

type of battery in the system and repetitive hand tuning to select a well-behaved covariance 

matrix (He et al., 2012). Parameters of the particular battery and accuracy of the selected model 

are variables that are closely concerned with the estimation result. As the battery ages, the 

derived battery model using a ‘fresher’ cell’s data is biased and may even be invalid. The 

capacity decreases while impedance increases for aged cells, which can result in an offset/error 
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from the true SoC and even divergence of the observer. In addition, the initial states of the 

observer that are fed from external sources significantly affect the performance of the estimator, 

in terms of convergence and accuracy. 

2.4 Data-driven Methods 

 With advancements in computation and an abundance of real-world data, machine 

learning or specifically neural network-based methods are providing researchers with the ability 

to achieve significant advancements in many fields (Krizhevsky et al., 2012; CireAn et al., 2012; 

Hinton et al., 2012; Ma et al., 2015; Wang et al., 2016). Machine learning techniques, such as 

fuzzy logic, support vector machines (SVMs) and neural networks are used to analyze the 

nonlinear relationship between observable variables and battery states (Li et al., 2011; Alvarez et 

al., 2013; Hu et al., 2014; Eddahech et al., 2012; Guo et al., 2017; Dong and Wang, 2014; Tong 

et al., 2016; Hannan et al., 2018). Fuzzy logic was used to define battery working state (BWS) to 

solve the battery over-discharge problem and associated damage resulting from inaccurate SoC 

estimation. LiB state estimation based on SVMs and optimized support vector machines for 

regression (SVRs) are utilized for EV applications under diverse driving conditions. Especially, 

SoC estimation applying neural network-based methods has drawn attention, the working 

principle of which shown in Fig. 11.  
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Figure 11: Working principle of data-driven methods. 

Compared to a 2% average SoC error achieved by model-based observers (Plett, 2004; 

Xiong et al., 2017), 4% RMS error on terminal voltage is achieved with 2-layer neural network 

and 30 neurons in the hidden layer (Charkhgard and Farrokhi, 2010). However, should further 

error reduction be desired, neural networks need the help of external filtering/observer (like 

Kalman-filter in Du et al. (2014). Chemali, Kollmeyer, Preindl, et al. directly mapped the 

measurements of the cell (instantaneous and average terminal voltage, temperature, and average 

current) to the SOC estimation and is able to achieve a mean absolute error below 1% in Chemali 

et al. (2018). 

Despite many studies on data-driven SoC estimation successfully achieved excellent 

results, there are problems remain unsolved (Li et al., 2019). For instance, the output of FNN-

based approach only depends on current input, whereas the current SoC is also associated with 

history observable variables, which makes it difficult for FNN to process time-sequence 

problems. 

2.5 Impedance-based Methods 

The dependency between impedance of battery and SoC is utilized in researches on the 

SoC estimation for Lead acid, NiMH, nickel-cadmium and LiBs. The SoC has been extensively 

investigated as a function of impedance variation (Elabadine et al., 2017; Cuadras and Kanoun, 

2009; Zenati et al., 2010; Waag et al., 2013; Ovejas and Cuadras, 2018). However, the 

impedance changes significantly with the battery’s aging status, as shown in Fig. 12. The 

impedance-based method is no longer a good indicator of SoC as the battery ages. Additionally, 

the sensitivity of impedance on SoC is much lower than on temperature, as a result, a very 

accurate impedance-based method often requires compensation from the temperature. However, 
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such accuracy cannot always be maintained for batteries in BEVs or HEVs, due to the rapid 

temperature change in driving process. 

 

Figure 12: Impedance characteristic at different aging status.5 

 

 

 

  

 
5 Data from Ovejas and Cuadras. Impedance Characterization of an LCO-NMC/Graphite Cell: Ohmic 

Conduction, SEI Transport and Charge-Transfer Phenomenon. Batteries 2018, 4(3), 43, 2018. 
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Chapter 3: System Set-up 

The goal of this project is to compare the results of several SoC estimation techniques, 

like aforementioned OCV Mapping, Coulomb-counting, and a newly developed method applying 

machine learning model that promises both rapid response and high accuracy. The flowchart of 

the project design is demonstrated in Fig. 13. 

 

Figure 13: Flowchart of the project. 

This thesis hypothesizes that passing current pulses through a battery and measuring the 

voltage response to these pulses can be used to retrieve information about a lithium-ion battery’s 

SoC. Since these measured electrochemical responses do not have an obvious relationship with 

the SoC, a neural-network can be used to learn the relationship and reconstruct the information. 
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The injected pulses are therefore expected to help decrease the error of SoC estimation to some 

extent. 

3.1 Test by the Cycler 

The high-precision cycler, shown in Fig. 14 is used to charge and discharge the battery in 

a slow rate, i.e. 0.1 C-rate, to avoid the influence from internal resistance and acquire the true 

capacity. The smaller the current rate is, the better the internal resistance can be ignored (Wang, 

2016). The real-time battery cycler is capable of testing the cells using constant current (CC), 

constant voltage (CV), CCCV, and dynamic current profiles (driving cycles) with a sampling 

resolution of 0.1s. The hi-res measurements, including voltage, current and temperature, are 

uploaded to the database for generating OCV-SoC curves as the basis for OCV Mapping and 

training of machine learning model.  

 

Figure 14: Photo of the cycler. 

During the tests with cycler, the capacity should be checked regularly in order to interpret 

the SoC correctly. Since the cpacity will fade if the battery ages, which significantly degrade the 
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performance of SoC estimation as it highly rely on the present capacity according to the SoC 

definition in Eq. (1).  

A higher current level contributes to lower estimation error (Wang et al., 2019), as 

depicted in Fig. 15. However, the feasibility of the current amplitude in the real battery system 

needs to be investigated. As for selecting the amplitude of the current pulses, a trade-off was 

made between estimation accuracy and feasibility. As a result, the current amplitude is chosen to 

be 1 C-rate since it potentially will decrease the error more while keeping the cells away from 

maximum allowed current. Fig. 16 shows the plot of the 3-minutes pulse current consists of A 1-

min long charge pulse and discharge pulse with 1-min rest between them. Note that in this thesis 

the sign convention for the current is negative for charging and positive for discharging. 
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Figure 15: Error of SoC estimation at different current pulse amplitude.6 

 

Figure 16: 1 C-rate pulse current plot. 

Aging a battery is a time-consuming task. To accelerate the aging process, a pre-defined 

aging procedure is proposed here. The cells under test fully discharge with a CC at 1 C-rate, and 

followed by fully charge with a CC at 1 C-rate to maximum voltage and CV until current drops 

below 150 mA. The aging test will be terminated when the capacity reaches 80% of its original 

one, which is normally called end-of-life (EOL) for EV application. 

The systematic testing procedure composed of capacity check, pulse train and aging test 

is proposed in Fig. 17. 

 
6 Data from Wang et al. High-Fidelity State-of-Charge Estimation of Li-Ion Batteries using Machine 

Learning. 2019. 
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Figure 17: Entire testing procedure by battery cycler: (a) the Flowchart, (b) Complete 
test sequence captured by the cycler.7 

3.2 Testbench Intro 

The test bench employed in this thesis is a three-layer structure system, including a 

battery balancing circuit, a TI controller and a higher-level controller, as shown in Fig. 18. 

 
7 Figure from Wang et al. High-Fidelity State-of-Charge Estimation of Li-Ion Batteries using Machine 

Learning. 2019. 
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Figure 19 showcases the zoomed-in photo of the batteries used in real-world experiments, which 

are Lithium-ion rechargeable cells by Samsung SDI, and the parameters, including nominal 

capacity, nominal voltage, charging voltage and discharge cut-off voltage, are specified in Table 

1. 

 

Figure 18: Photo of the real-world testbench. 
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Figure 19: Photo of the Lithium-ion rechargeable batteries. 

3.2.1 Battery Balancing Circuit 

Normally, when the batteries are connected in series, there is somewhat difference in 

battery capacity or SoC for individual cells under load conditions, which is not desired in most 

cases as this means the charge/discharge for the whole battery pack has to be stopped as one of it 

reaches over charging/discharging protection. Therefore, a battery balancing circuit, which is 

able to accommodate those SoC differences between battery cells by transferring energy from or 

to individual cells, is in demand in order to monitor and regulate the behaviors of batteries 

(Wang and Preindl, 2019).  

Fig. 20 is the topology of the employed half-full bridge circuit that is able to achieve 

battery balancing, which is divided into four parts. The high voltage side, also the input of this 

circuit, includes two battery cells. The half bridge on the primary side allows the two cells to be 

balanced by one converter. It is designed to convert the DC that from the battery side to AC as 

the battery can only generate DC power, while the transformer requires AC input. The full bridge 

ICR18650-26F 
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circuit on the secondary side then works as a rectifier to implement the conversion from AC to 

DC, which offers a more stable and reliable voltage to low voltage side. Additionally, the 

transformer in this topology is used for bidirectional power transmission and galvanic isolation, 

hence, the input batteries can either be charged or discharged by controlling direction of their 

power separately. If the two battery cells are at different SoC levels, in order to realize the 

battery balancing function, the currents of two cells are adjusted independently by controlling the 

input power and the cell-to-cell current. A balanced state will be reached by charging the low-

SoC cell and discharge the high-SoC cell, until both cells have achieved an identical SoC value. 

 

 

Figure 20: Topology of the battery balancing circuit.8 

The photo of this battery balancing circuit is shown below: 

 
8 Figure from Wang and Preindl. Dual Cell Links for Battery-Balancing Auxiliary Power Modules: A 

Cost-Effective Increase of Accessible Pack Capacity. In IEEE Transactions on Industry 
Applications, 2019. 
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Figure 21: Photo of battery balancing circuit. 

3.2.2 Lower-level Controller 

The measurements of voltages and currents of two batteries from sensors in battery 

balancing circuit are sampled by the TI controller, which has two CPUs inside. CPU1 is mainly 

responsible for data processing and control strategies implementation in this controller, including 

averaging the instantaneous measurements, computing the SoC through calculating the 

coulombs, as well as maintaining constant current control. For CPU2, it basically sends the 

measurements (currents, voltages and SoCs) that saved in the shared memory of two CPUs to the 

higher-level controller. Fig. 22 is the photo of 28379D controller, along with an upper layer 

board that contains filtering modules and PWM level shifter.  
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Figure 22: Photo of TI controller. 

The control strategies inside the TI controller shown in Fig. 23 so as to realize constant 

current condition as experiments require. The input power and the cell-to-cell current are 

controlled by two closed control loops in the figure. 

 

Figure 23: Control strategies in the microcontroller.  
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The upper closed loop control strategy applies a variable, phase shift, to control the input 

power. The control logic equations are given by: 

𝑃_fgh 	= 𝐼ijkk2fgh	 × 	𝑉ijkk2mgno × 2	 (22) 

𝑃_mgno 	= 𝐼2mgno	 × 	𝑉2mgno+		𝐼pmgno	 × 	𝑉pmgno
(23)  

where 𝑃_qjr is the reference input power of the sum of two cells, and 𝐼ijkk2_qjr is a 

command current value that describes the amplitude of the desired constant current. 𝑃_Yjst is the 

real-time measurement of total input power that derived from instantaneous cell- currents and 

voltages; 𝑃_jqquq	is the difference between 𝑃_qjr and 𝑃_Yjst, which is fed into PI controller to 

generate a matching phase shift for the battery balancing circuit, the phase shift is denoted as 𝜃. 

Table 1: Controlling factors and parameters of the battery. 

Kp1 Kp2 Ki2 Ki2 
-0.001 -9.99e-05 -0.2 -0.7 

Nominal 
Capacity 

Maximum 
Charging/Discharging 

Current 

Charging 
Voltage 

Discharge 
Cut-off 
Voltage 

3000mAh  4/15A 4.2 ± 
0.05V 

2.5V 

 

This procedure is similarly adopted to obtain the other control strategy for the cell-to-cell 

current control by manipulating the difference of duty cycle between the two cells, as can be 

seen in the lower loop.  

where 𝐼xi_qjr	is the command value of the cell-to-cell current, the feedback of this closed 

loop control, 𝐼xi_Yjst, is the cell-to-cell current that derived from instantaneous cell currents. 

𝐼xi_jqquq depicts the result of 𝐼xi_qjr minus 𝐼xi_Yjst, which is fed into PI controller to generate a 

corresponding duty cycle compensation, the duty cycle variable is denoted as 𝑑. 
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The constant current control at arbitrary current level can be achieved with the control 

logics described above, which is used in further SoC estimation experiments to let batteries be 

charged/discharged under a constant 1 C-rate current. 

3.2.3 Higher-level controller (BeagleBone Black) 

The higher-level controller in the testbench functions as a ’warehouse’ for data storage 

and a ‘computation center’ for machine learning model as the insufficient storage space of TI 

controller. Data that handled by TI controller is transferred into the higher-level controller, 

BeagleBone Black, for data analysis and plotting via Serial Peripheral Interface (SPI) 

transmission (Leens, 2009; Saha et al., 2014). The SPI communication between controllers are 

sending measurements, such as cell average currents and voltages, the cell-to-cell current and 

SoCs, from the shared memory of CPU1 and CPU2 of the lower-level controller to the higher-

level one in the format of 8-bit. Moreover, the matrices of machine learning model are saved in 

BeagleBone Black, and the computation that in order to get the output of the machine learning 

model is implemented in it as well. The photo of higher-level controller is shown in Fig. 24, the 

resistors in the figure are used to ensure reliable signal transmission. 
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Figure 24: Photo of BeagleBone Black. 

3.3 SoC Estimation in Real-Time System  

The summarized diagram of the testbench is illustrated in Fig. 25. The entire system 

consists of (i) the peripheral hardware (the Battery balancing circuit); (ii) center and localized 

controllers that actuates the pulse injection, necessary BMS functions and circuit operation; and 

(iii) machine learning model stored in higher level controller (BeagleBone Black) that analyze 

the input data and generate the result for the SoC calculation; (iv) higher level controller that 

store the data from microcontroller for further analysis and plots.  

Beagle bone Black

For reliable data transmission
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Figure 25: Diagram of the system. 

3.3.1 Pulse Injection Module and Measurements Update Module 

As the key novelty of the proposed concept, the pulses should be injected to the cells at 

the right timing with proper amplitude and duration as accurate as in laboratory environment.  

The microcontroller is able to generate PWM pulses in the shape of given reference 

currents of the battery cells, with specified amplitude and duration of expected pulses, and pass 

them to battery balancing circuit to actuate the pulses into the battery cells. Additionally, the 

property (amplitude, period, etc.) of pulses could be arbitrarily adjusted by properly controlling 

the converters behavior. 

All key features to estimate SoC are extracted with the measurements update module. 

The microcontroller equips high-resolution analog-to-digital converters that translates the analog 

signals (such as voltage/current measurements) to digital values, such that the computing unit 

can process them. The essential measurements (cell voltages, currents and temperatures) are 

captured and updated at the pre-defined sampling rate. Based on the sampling rate, the 
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measurements will be continuously uploaded to the computing unit via SPI protocol for further 

calculations of the machine learning model. 

3.3.2 SoC Estimation Module 

As explained previously in the flowchart, SoCs are calculated through coulomb-counting, 

OCV mapping and machine learning-based approach. Unlike OCV mapping method that has to 

wait for a long relax time in order to obtain the open-circuit voltage, which is not practical for 

real-world EV applications, the machine learning-based method yields both promptly response 

and high accuracy. 

As the current pulses are injected to the cells through pulse injection module, the 

corresponding responses from battery cells are recorded by measurement update module to be 

used as inputs for the SoC estimation using machine learning model. The SoC estimation can be 

performed based on the measurement with the machine learning model, taking advantage of the 

simplified matrix multiplications. 

Two machine learning-based approaches using pulse injection to augment SoC estimation 

have been considered as candidates to update SoC estimation. 1) The machine learning model is 

continuously operating to obtain the SoC values. However, it usually takes 6-8 minutes9  for one-

time SoC calculation due to the matrix multiplications of the machine learning model is very 

time-consuming, which hence makes this approach not applicable for real-time SoC estimation. 

2) machine learning model only operates at certain moments, for example when the vehicle stops 

at red light. Between the times when SOC estimation is updated by machine learning, other SoC 

estimation techniques (such as coulomb-counting and EKF) can be applied to estimate SoC for 

those cost- and computation-constrained applications. 

 
9 Implement on BeagleBone Black, with Python 3. 
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Fig. 26 showcases how the latter method is employed in the actual battery system with 

UDDS driving cycle, which represents a city driving condition for vehicle testing. The red line 

represents the actual SoC. The blue one illustrates the SoC estimation algorithm of the latter 

approach, where SoC resets at every point when the electric vehicle stops. After the vehicle 

restarts, other SoC estimation technique (such as coulomb-counting or EKF) resumes. As a 

result, accumulated error in the previous driving period will be eliminated. Please note that the 

error presented between the two SoC curves, in Fig. 26, is exaggerated for greater clarity. In 

practice, the difference between them will be heavily dependent on the SoC estimation strategy 

adopted in the system and can be reduced significantly by correcting the estimated SoC more 

regularly. 

 

Figure 26: Machine learning approach implemented with UDDS driving cycle. 

A summary of the way how three SoC estimation techniques, including coulomb-

counting, OCV mapping and machine learning-based method are employed and compared is 

evident in Fig. 27. 

Machine Learning model
Machine Learning model 
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Figure 27: Three SoC Estimation techniques implemented in charging. 

Coulomb-counting is used during the whole charging/discharging period as the basis of 

evaluating the performance of both OCV Mapping and machine learning-based method since the 

current sensors can achieve less than 0.1% error in the laboratory environment. OCV Mapping is 

then applied to get the SoC with the voltage measurement that has been relaxed after 90 minutes 

relax time. Finally, a pulse is injected to retrieve an input of the machine learning model. 

3.3.3 Machine Learning Update Module 

The applied machine learning model has a structure of two hidden layers, with fully 

connected nodes on each layer. The input of the model is 1799 battery voltage points that 

collected during a three minutes pulse at a 10Hz sampling rate and the output is the estimated 

SoC value for specified input. In order to combine the machine learning model with present 

testbench, the weights and biases of the FNN are saved in higher-level controller for SoC 

computation. The diagram of the utilized feedforward neural network (FNN) is shown in Fig. 28, 
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this FNN can be summarized by a sequence of matrix multiplications and can be represented by 

following composite functions: 

  

Figure 28: Diagram of the 2-hidden-layer neural network. 

ℎ0k (𝑝) = 	𝜂	 }A~𝑤�,0k , ℎ0kH2(𝑝) + 𝑏0k �
0

� (24) 

ℎ0k (𝑝) = 𝑆𝑜𝐶(𝑝), 𝑓𝑜𝑟	𝑙 = 𝐿 (25) 

𝜂 = max(0, ℎ) (26) 

𝑒(𝑝) = 𝑆𝑜𝐶(𝑝) − 𝑆𝑜𝐶∗(𝑝) (27) 

where 𝑤�,0k  denote the weight connection between neuron	𝑗 in layer 𝑙 -1 and neuron 𝑘 in 

layer 𝑙. Let 𝑏0k  and ℎ0k  be the bias and the temporary outcome, respectively, of neuron 𝑘 in layer 

𝑙. 𝑆𝑜𝐶(𝑝) is the estimated state-of-charge for pulse-train 𝑝. The nonlinearity, denoted as 𝜂, used 

in these networks is called Rectified Linear Units (ReLU) due to its simplicity during the 

X1

X2

X3

X1799

h1

h2

h3

h4

h5

hn

i1

i2

i3

i4

i5

in

Input:

SoC

Output:

1st 2nd 
Hidden Layer Hidden Layer



39 
 

feedforward and backpropagation steps. The error signal measuring similarity of the estimated 

SoC value to the ground-truth value is  𝑒(𝑝). 

Figure 29 is the flow diagram of the SoC estimation that depicts the procedure described 

in Eq. (24)-(27). 

 

Figure 29: Flowchart of SoC calculation by 2-hidden-layer neural network. 
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Chapter 4: Experimental Results 

In this chapter, the procedure of experiments and results are described and summarized. 

The entire experiment process is divided into (i) Data extraction for producing the OCV-SoC 

curves of both charging and discharging environments; (ii) Evaluation for OCV Mapping 

approach; (iii) Training and validation process for machine learning; and (iv) Comparison 

between FNN and OCV Mapping. 

4.1 OCV-SoC curves 

To generate OCV-SoC curves used in further OCV Mapping evaluation experiments 

under both charging and discharging conditions, the test data collected by the cycler is also 

categorized into charge- and discharge-data, as presented as the blue lines in Fig. 30 and Fig. 31, 

respectively. The test data then is fitted by a 6th-order polynomial curve fitting in order to 

generate fitted data curves, which are plotted as the orange lines in Fig. 30 and Fig. 31.  

When OCV Mapping is applied, for every OCV value, a SoC can be calculated with the 

given 6th-order polynomial as follows: 

𝑝(𝑥) = 𝑝2𝑥� + 𝑝p𝑥� + 𝑝�𝑥� + 𝑝�𝑥� + 𝑝�𝑥p + 𝑝�𝑥2 + 𝑝� (28) 

𝑝(𝑥) = 𝑆𝑜𝐶 (29) 

𝑥 = 𝑂𝐶𝑉 (30) 

The fitted curves hence can be expressed as 6th-order polynomial equations and the 

coefficient arrays selected for charging and discharging OCV-SoC curves are presented in Table 

2.  

Table 2: Coefficient arrays of charging and discharging OCV-SoC curves. 

 p1 p2 p3 p4 p5 p6 p7 
Charge 2.89 -58.50 490.03 -2175.03 5395.70 -7094 3862.32 

Discharge 0.35 -7.31 62.31 -281.10 708.24 -945.44 522.60 
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Figure 30: OCV-SoC curve under charging. 
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Figure 31: OCV-SoC curve under discharging. 

4.2 Performance of OCV Mapping 

In order to evaluate the performance of OCV Mapping, comparisons between coulomb-

counting and OCV Mapping under both charging and discharging are made. Two batteries cells 

in the proposed testbench are first charged from 0% SoC to 90% SoC, then discharged to empty, 

applying 1 C-rate constant current. For every 10% drop/increase in SoC in the testing process, 
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which is the OCV. The OCV Mapping result is hence derived from this stable OCV and 
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charged/discharged for another 10% SoC and repeat the same sequence as aforementioned. This 

procedure keeps repeating until cut-off voltage is reached at any time.  

In Fig. 32 and Fig. 33, for one battery cell, only coulombs are calculated to achieve SoC 

estimation, as the blue lines in figures; the red lines represent the SoC change of the other cell, 

where coulomb-counting is used through discharging/charging period, and OCV Mapping is 

applied after 90 minutes relax time. The error of OCV Mapping, can be seen as the difference 

between the red and blue line in figures, is defined as the difference between the SoC derived 

from OCV Mapping and the SoC calculated from coulomb-counting. 

 

Figure 32: Experimental results of OCV Mapping under charging.  
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Figure 33: Experimental results of OCV Mapping under discharging.  

From Figure 32, the error of OCV Mapping can vary from 0.68% to 5.55%, while the 

error under discharging changes from 0.2% to 3.43%, as can be seen in Fig. 33. The mean 

absolute errors (MAEs) of OCV Mapping with 90-minutes relaxations during charging and 

discharging are 3.35% and 1.86%, respectively. 

The currents, voltages and SoCs when charging the batteries from 0% SoC to 90% SoC 

and discharging the batteries from 90% SoC to 0% SoC under 1 C-rate constant current are 

plotted in Fig. 34 and Fig. 35, respectively. 
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Figure 34: Currents, Voltages and SoCs during charging. 
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Figure 35: Currents, Voltages and SoCs during discharging. 

Typically, the sensed voltage is oscillated after discharging/charging and thus need time 

to be relaxed to the open-circuit voltage (OCV). The performance of OCV Mapping is 

investigated from the dependency on length of relax time, which is beneficial to making a trade-

off between accuracy and pace, a reasonable time for battery relaxation hence can be selected. 

As a result, by generating these error figures, we had some confidence and inference about the 

time we need to wait for battery relaxation and how much accuracy has been achieved with given 

relax time. The error of OCV Mapping during the relax time under charging and discharging is 

presented in Fig. 36 and Fig. 37, respectively. 
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Figure 36: Error of OCV Mapping versus. Relax Time when charging. 
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Figure 37: Error of OCV Mapping versus. Relax Time when discharging. 

From the results, a minimum of 30 minutes relax time is necessary in order to obtain a 

relatively reliable result. However, the error after 30 minutes relaxation still has a difference with 

the end point error, this difference is usually within 1%. 

4.3 Training for Machine Learning Model 

Training of the FNN is operated with test data that captured by the cycler and is done 

offline and only when network converges to a lower loss threshold can the networks be applied 

online. During online operation, only a forward pass is required in order to estimate SoC. 

Backward passes are no longer required once the model is appropriately trained. FNNs offer an 

advantage of faster computing time, once trained, since a forward pass is comprised mainly of a 

sequence of matrix multiplications. 
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In this section, TensorFlow (Abadi et al., 2015), a machine learning framework, is used 

with a TITAN Xp NVIDIA Graphical Processing Unit (GPU). The TensorFlow and Keras 

frameworks provide the ability to prototype neural networks quickly and iterate on various 

architectures and loss functions. These frameworks also offer automatic gradient computation 

thereby allowing for a seamless backward computation without any manual intervention. 

4.4 Input of Machine Learning Model 

As aforementioned, the proposed hypothesis of the project is that passing current pulses 

through a battery and measuring the voltage response to these pulses can be used to improve the 

robustness of SoC estimation.  

The test procedure is similar to the steps of implementing OCV Mapping. The pulses are 

injected at every 10% drop/increase in SoC in the testing process. Two batteries cells in the 

proposed testbench are first charged from 0% SoC to 90% SoC, then discharged to empty, 

applying 1 C-rate constant current. For every 10% drop/increase in SoC, the batteries are relaxed 

for 1-hour, allowing complete equilibrium inside of the battery. By allowing 1-hour relaxation 

before injecting pulses, the voltage response isolates the charge-transfer and/or charge diffusion 

effects that are induced by previous current excitation. The subsequent voltage response will be 

purely excited by the current pulses. If the cell is not well rested, the charge history will be 

coupled into the pulse response, which makes the results less accurate. The voltage response is 

captured as the input of the machine learning model, including 1799 voltage points that sampled 

at 10Hz during this 3-mins pulse. After pulse injection, the two cells are charged/discharged for 

another 10% SoC and repeat the same procedure. The sample inputs for machine learning model 

is shown in Fig. 38. 
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Figure 38: Sample Inputs for machine learning model, including voltage responses 
from both charge and discharge. 
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calculation; whereas 8 minutes is needed for a model with 2400 nodes in each layer, a 300-node-

model only demands 90 second. However, the more nodes in each layer contributes to a more 

accurate SoC result. The mean-absolute errors of the aforementioned models from all test data 

are 1.12%, 1.13% and 3.27%, independently. For these reasons, a trade-off has been made 

between computation time and accuracy. In this thesis, the number of nodes in each hidden layer 

for charge is chosen to be 2400 since it can achieve the precise estimation result while keeping 

reasonable computation time. The size of FNN for discharge is selected to be 2500 nodes on 

each hidden layer, it is capable of achieving 0.80% MAE. 

4.6 Comparison between OCV Mapping and Machine Learning-based method 

As discussed previously, the MAEs of two FNNs for charge and discharge are 1.13% and 

0.80%, separately, while the MAEs of OCV Mapping with 90-minutes relaxations during 

charging and discharging are 3.35% and 1.86%, respectively. The 3-mins pulse is injected after 

90 minutes battery relaxation, the OCV Mapping is applied before the pulse injection as to 

compare the SoC results obtained from two methods. The comparison processes and results of 

charge and discharge are indicated in Fig. 39 and Fig. 40, respectively. The charge- and 

discharge- error at every SoC level of machine learning model and OCV Mapping are presented 

in Fig. 41 and Fig. 42, separately. The error shown in figures at each SoC level is the average 

error at this SoC value from all test data. 
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Figure 39: Comparison between OCV Mapping and machine learning-based approach 
during charging. 
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Figure 40: Comparison between OCV Mapping and machine learning-based approach 
during discharging. 
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Figure 41: Average Error of OCV Mapping and machine learning-based approach at 
each SoC level during charge. 

 

Figure 42: Average Error of OCV Mapping and machine learning-based approach at 
each SoC level during discharge. 
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Conclusion  

  This thesis introduces a new strategy to augment the performance of SoC estimation 

powered by neural networks. A 2-hidden layer structure is used and the concept of the pulse 

injection is demonstrated to achieve the high-fidelity SoC estimation. OCV Mapping is also 

employed in order to evaluate and compare the performances with machine learning-based 

approach. Coulomb-counting is selected as the basis of comparison as it is capable of obtaining 

SoC with an error less than 0.1%. The real-world testbench composing of a battery balancing 

circuit, a TI controller and a Beaglebone Black is introduced, where a pulse injection can be 

integrated into balancing current demands without interfering with driving behaviors. Testing 

procedures tailored for both OCV Mapping and machine learning-based approach are discussed 

and detailed steps are given. The method to construct FNN for mapping the pulse measurements 

to a ground-truth is provided. By applying FNN to the data, the SoC can be reconstructed within 

an error boundary of 1.13% during charge and 0.80% during discharge, whereas OCV Mapping 

has an error of approximately 3.35% for charging and 1.86% for discharging. Thanks to the 

advantage of FNN, a BeagleBone Black is capable of calculating SoC with just simplified matrix 

multiplications in 6-8mins given a well-tuned model, which tremendously cut the time cost to 

one tenth of OCV Mapping.  
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Appendix A 

A machine learning model trained with both charge- and discharge- pulses provides 

relatively accurate outcomes either during charge or discharge, which error at each SoC level is 

presented in Fig. 44. Unlike OCV Mapping that has to apply two different OCV-SoC curves for 

charge and discharge, FNN is capable of handling SoC estimation for either charge or discharge 

with a single model, while also obtaining more precise results. 

 

Figure 43: Average Error of OCV Mapping and machine learning-based approach at 
each SoC level for both charge and discharge. 
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Appendix B 

The robustness of the FNN has been tested with the oscillated voltage response, a 

comparison between oscillated input and stable input was made to evaluate the performance of 

this model. Figure 44 illustrates three voltage inputs at 30% SoC level during charge, one of 

which is oscillated due to a manually set changing variable. Based on the MAEs shown in the 

figure, this FNN provided a consistently accurate result even if the input is drastically changed 

by artificial disturbance. 

 

Figure 44: Sample inputs at 30% SoC. 
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