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Abstract—The DC capacitor bank is an expensive and bulky
component, particularly in automotive applications. Its selection
is subject to a number of competing constraints and is often
sub-optimal. This paper proposes a generalized design method-
ology for the capacitor bank and introduces several optimiza-
tion approaches under the umbrellas of convex, heuristic and
pseudo optimization. Simulated annealing, a stochastic heuristic
optimization algorithm, features prominently and shows good
promise for automated selection. The discussed methods are
assessed relative to one another for the design of the inverters and
it was found that simulated annealing was able to reliably find
the global minimum of the dataset, as well as returning solutions
that were marginally less optimal than the ones obtained through
careful manual optimization. The technique is general enough
such that it can be applied to other components in a converter.

I. INTRODUCTION

Demand for power electronic converters is growing rapidly
with consumers and industry requiring smaller, cheaper and
more efficient systems. System cost and volume are signifi-
cant constraints, particularly for the automotive sector, where
stringent targets have been laid out to drive vehicle costs down
and fuel economy and adoption up [1]. To reach these, it
becomes necessary to optimize the components in the system.
Capacitors are no exception, given their ubiquity.

Little literature focuses on the problem of optimal discrete
DC capacitor bank design and the subsequent component
selection. Many focus on power level sizing and placement
of capacitor banks for AC power distribution and reactive
power compensation. For power electronic applications, many
papers have considered the optimization of other facets of a
design: the materials used to manufacturer power transistors
[2]; converter topology to minimize voltage and current ripple
[3], [4]; the control to minimize ripple [5], [6]; the gate
drive voltages and output current for achieving maximum
efficiency [7]; and the switching frequency [8]. Others have
skirted the issue and considered preferred sizings, both in
terms of capacitance and volume, but have not worked towards
selecting an exact component [8]–[10].

Two studies, however, have broached the particular subject
of interest, though not in any formal optimization sense. In
[11], the authors analyzed the harmonic content of an inverter
and determined which capacitor(s) from a dataset would best
handle the resultant ripple current and minimize EMI.

The second publication, [12], is similar in nature: a database
of capacitors is prepared and their characteristics are evaluated
using a cost function with the lowest cost electrolytic and film
capacitors being selected. The use of two types of capacitors
and a cost function are the most significant differences from
[11]. Different technologies are used as each has a different
frequency response, which helps to reduce EMI.

The aforementioned studies have problems, however. For
the former, once a suitable device was found the algorithm
terminated; in the latter, the entire database needed to be
evaluated. Furthermore, the paralleling of electrolytic and
film capacitors was encouraged, which is worrying from a
reliability standpoint [13]. Considering that capacitors are a
regular failure point in power electronic converters and they
occupy significant space at high cost–35%, 23% and 23%
of the volume, weight and cost, respectively [14]–a better
approach is needed.

With these considerations in mind, this paper seeks to
present a simple analysis technique for both designing and se-
lecting the DC capacitor bank of a power electronic converter
from a set of commercially available components. Several
classes of optimization methods are discussed and applied
to the design of two three-phase inverters. Their outputs are
compared with the capacitor bank that was manually selected
for each converter and conclusions are drawn.

II. OPTIMIZATION METHODS

Three major categories of optimization are briefly intro-
duced in this section. Several techniques are discussed for
each grouping that were found to be effective in framing the
problem and performing the optimizations themselves.

A. Convex

A convex function is the ideal scenario when approaching
an optimization problem as it guarantees that there exists
only one minimum, which is the global minimum. Discrete
optimization is an inherently non-convex problem as the data
is not continuous. The component selection problem, which is
discrete, is highly nonlinear and non-convex and, oftentimes,
without any real pattern. Thus, a convex representation is
unachievable without significant adjustments to the data itself.

One way to transform such a problem into a convex one is
to employ the convex hull. While the convex hull intrinsically
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performs a discrete-to-continuous relaxation, it is beneficial to
make it explicit; i.e.,

{D | D ∈ Z+} → {D∗ | D∗ ∈ R+}, (1)

where D represents the set of design parameters with discrete
values and D∗ is the relaxed, continuous set of parameters.
It is also assumed that every parameter has a value greater
than zero, as non-positive numbers would not be physically
realizable.

Applying the convex hull, per (2), the system is bounded
in a convex fashion. The application of the convex hull to
two capacitor parameters from the dataset used in this work
is shown in Fig. 1.

Co(D) = ∩{D∗ | D ⊆ D∗, D∗ convex} (2)

Fig. 1: The 2D convex hull.

The convex hull returns the coordinates of the extremities of
the dataset. Using this information, a series of linear equations
can be inferred and solved as an optimization problem of the
form of (3) via linear programming or interior point methods.

minimize
x

cTx

subject to Ax ≤ b
(3)

B. Heuristic

Heuristic methods fill the gap where convex ones fail,
which include when the function is non-convex or nonlinear,
is prohibitively difficult to optimize analytically, or no analyt-
ical function exists. Heuristic methods tend to find a “close
enough” solution which, depending on the problem at hand,
may be acceptable.

Evolutionary algorithms, such as the genetic algorithm (GA)
and particle swarm optimization (PSO), fall under the umbrella
of heuristic optimization.

1) Pareto Optimality: Pareto optimality involves determin-
ing what is called the trade-off curve, or Pareto front, where
one parameter can only be made better by making the other
worse. In this way, a set of the “best” solutions can be provided
to the decision maker (DM) for final analysis. An example of
the Pareto front is shown in Fig. 2.

Fig. 2: The 2D Pareto front.

A drawback to this approach is that more than one feasible
solution is returned to the DM, thus requiring human in-
volvement, which may be undesirable. Conversely, depending
on the problem, it may be advantageous for a human to
be involved. The capacitor selection problem is one such
example: Depending on the contents of the dataset, some
components may not be commercially available or they may
not have the best fit (e.g. the package is not volumetrically
efficient in-system). A method that returns only one solution,
then, may still need human involvement to manually adjust
either the dataset or the constraints to avoid such pitfalls,
rendering the emphasis on automation null and void.

2) Simulated Annealing: Simulated annealing uses stochas-
tic methods to converge to a solution. A thorough treatment
of the subject can be found in [15]–[17]. Probabilistically, it
is capable of converging on the global minimum, which is
encouraging when seeking the optimal solution.

The first step in the algorithm is to compute the acceptance
probability, which is calculated as

p (T ) =

{
exp

(
−
(
En+1−En

T

))
, if En+1 − En ≥ 0

1, if En+1 − En < 0,
(4)

where En+1 and En are the next energy state and current
energy state, respectively; and T is the so-called temperature.

The acceptance probability is a number over the range [0, 1]
that is used to determine whether a move should be accepted
or rejected. The result from (4) is compared to a number
drawn from a probability distribution–normally the uniform
distribution–and a decision is made, per (5),

E =

{
En+1, if p (T ) ≥ ρ
En, if p (T ) < ρ,

(5)

with ρ being a number drawn from the probability distribution.
The comparison of p (T ) with ρ allows for local minima to be
escaped from by allowing movement to higher energy states
in the hope of eventually converging on a lower value.

The selection of the neighbour, En+1, which is a potential
next position for the algorithm, can be done in a multitude

10



of ways using any preferred probability distribution. It can be
calculated as

ni+1 = ni +X × T, (6)

where ni is the current position in the data set and X is a ran-
dom variable, drawn from a probability distribution of choice,
with adjustments made, depending on the distribution, to allow
for negative values, thereby enabling backwards movement in
the dataset. For example, a Gaussian distribution would be
biased towards its mean, whereas a uniform distribution would
have less predictable movement.

As the temperature is lowered, an optimal solution should
be approached; hence, at low T , movement when En+1 > En
is not favoured and simulated annealing becomes the greedy
algorithm, where the program seeks only to minimize the
system energy, E.

C. Pseudo-Optimal

Pseudo-optimality is the process of finding the best solution
within a dataset without using any explicit optimization tech-
nique. This is a significant step away from the previous two
categories which relied on, to some degree, a mathematical
formulation and solution of the problem at hand.

Pseudo-optimality permits arbitrary means of solution;
hence, there are infinitely many approaches that can be taken,
depending on how the DM wishes to find a solution. Only two
will be discussed herein.

1) Brute Force: The brute force algorithm moves through
the dataset, from the first entry to the last, searching out
specific pieces of data. It has many permutations, with a
popular one being to find the single smallest (or largest)
metric(s) in the dataset. This approach was used in [12] to find
the capacitor with lowest cost, per the authors’ cost function.
This technique has the added benefit of requiring no DM
influence, assuming the returned result is to be automatically
accepted.

This technique can be written in the form of an optimiza-
tion problem despite not being an optimization per se. The
expression is

minimize
f(x)∈Rn×m

f(x)

subject to fi(x) ≤ ci, i = 1, . . . , n

subject to x ∈ Rm,

(7)

where f(x) is a matrix with dimensions of the number of
capacitor banks under evaluation, m, and the number of ca-
pacitor bank parameters to be constrained, n. The constraints,
ci, are applied such that each fi(x) is less than a designer
prescribed value. An example operation is shown in Fig. 3,
where individual and coupled parameters are minimized. The
designer must be careful in selecting which parameter to
optimize as optimality in one may lead to sub-optimality in
the other(s).

Fig. 3: Brute force algorithm results with different constraints.

2) Sequential Tightening: The sequential tightening ap-
proach applies an initial set of constraints and finds objects
that satisfy them. Once the components are returned, the DM
applies his/her insight and determines whether they need to
be tightened or loosened, thereby increasing or decreasing the
number of feasible solutions at every iteration.

This technique can be thought of as a reformulation of the
constrained optimization problem of (7) to one of epigraph
form, where the function is placed in the constraints and
a vector of parameters, t, is tightened (loosened) until a
satisfactory result is found. This is written as (8). In this way,
it is made clear that the process is iterative in nature. However,
it must be noted that the DM is involved at every step of t
as, without this human influence, the algorithm would become
the aforementioned brute force approach.

minimize
t∈Rn

t

subject to fi(x) ≤ ci, i = 1, . . . , n

subject to ci = ti, i = 1, . . . , n

subject to x ∈ Rm

(8)

Sequential tightening was the method by which the ca-
pacitor bank of the inverter of [18] was designed. A special
emphasis was placed on the height as it was found to be the
driving factor in a volumetrically efficient and, consequently,
power dense design. The first and last steps of the process are
shown in Fig. 4, along with the selected capacitor.

An advantage of this method is the high level of DM
involvement, which helps to guide the process to a result that
best fits the design and avoids pitfalls such as components
that are not commercially available. However, this is also a
drawback insofar as automation is low.

D. Additional Remarks

Nothing precludes the synthesis of different categories;
indeed, in [19], the authors used PSO to build a continuous
function from scattered discrete data points. However, since
the function will likely be highly non-convex and nonlinear,
little is gained by pursuing surface fitting.
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(a) The full dataset, including electrolytic capacitors.

(b) Algorithm output, focusing on height.

Fig. 4: First and last steps of sequential tightening.

III. OPTIMIZATION METHODOLOGY

In this paper, a two-step process is proposed to find the
optimal device and design. By breaking the problem in two,
the method can be easily adjusted to handle a wide range of
problems. The purpose of such an approach is to decouple the
problem from the solution. The first step is the preprocessing
of the data, which generates the dataset to be optimized; the
second step is to apply an optimization algorithm that the
designer believes will deliver a satisfactory result.

This process was used to design the DC capacitor bank of
two three-phase inverters, both of which are shown in Fig.
5. The overarching goal of the designs was to maximize the
power density, which is calculated as

ρp =
Pout
V ol

, (9)

where Pout is the output power of the system and V ol is the
volume, measured in cubic decimetres (dm3) or, equivalently,
litres (L).

A. Dataset Preprocessing

The preprocessing of the dataset is accomplished by sub-
jecting the raw data–in this case, a database of individual
capacitors with their datasheet characteristics–to a series of

(a) The designed Silicon Carbide inverter [18].

(b) The designed dual inverter.

Fig. 5: The two highly power dense inverters.

constraints imposed by the design. The capacitor banks are
designed to meet the system specifications using one unique
part number per bank. This generates the set of solutions.

The minimum design of the DC-link capacitor bank is
dictated by the DC-link voltage, its expected overshoot and
the ripple current to be sustained. The number of series and
parallel components can be expressed as

ns =

⌈
max

(
VDC
VR

,
Vpk
VS

)⌉
(10)

np =

⌈(
IC,RMS

IC

)⌉
, (11)

where d.e is the ceiling operator; VDC is the DC-link voltage;
VR is the rated voltage of the capacitor; Vpk is the transient
voltage arising from the switching operations; VS is the surge
voltage rating of the capacitor; IC,RMS is the expected ripple
current to be sunk by the capacitor; and IC is the ripple current
rating of the capacitor.

The DC-link ripple current for a three-phase inverter can be
estimated as [20]

IC,RMS ≈
Iφ,RMS√

2
, (12)

where Iφ,RMS is the per-phase load RMS current, which is
assumed to be equal across all three phases. This approxima-
tion is valid for power factors near unity. As the power factor
reduces so, too, does the value of the ripple current.
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Together, (10) and (11) fully define the minimum charac-
teristics of a proposed solution. It may be beneficial, however,
to include other constraints and metrics. For example, if the
voltage ripple is to be kept at a certain level, then (11) can be
rewritten as

np =

⌈
max

(
IC,RMS

IC
,
ns · CDC

C

)⌉
, (13)

with C being the rated capacitance obtained from each ca-
pacitor’s datasheet and CDC the required capacitance of the
DC-link to obtain a certain voltage ripple.

The required DC-link capacitance can be estimated as [10]

CDC ≈
Iφ,RMS

4∆VDC(%)VDCfs
, (14)

where fs is the switching frequency of the transistors.
The total number of capacitors required to meet the base

specifications is the product of the required number of series
and parallel capacitors, as expressed by (15).

N = ns × np (15)

B. Optimization

The second step in the process is to perform the opti-
mization. This involves deciding what parameters are to be
minimized, e.g. volume, power losses, surface area; whether
one or several results are desired; and what technique should
be employed. The last point is not trivial and, indeed, requires
careful thought on the DM’s part. For example, if the dataset is
very large, then the brute force technique may be unacceptably
slow, whereas poor constraint selection may render sequential
tightening to be ineffective.

The choice of what parameter(s) is (are) to be minimized
can lead to non-optimal solutions in others. Take, for example,
Fig. 3: when only the losses are to be minimized, the volume
is unacceptably high whereas, when the volume is to be
minimized, the losses are low. A compromise, where the two
are minimized, yields a good compromise. Similar results are
obtained when using simulated annealing on the problem.

Hence, it is advantageous to couple parameters together to
guide the solver to a more balanced solution. This can be
achieved by employing a cost function. The cost function can
take any form or level of complexity that the DM desires. In
this work, a simple weighted sum is employed of the form

Jn =
∑

(w1v1,n + w2v2,n + · · ·+ wkvk,n) , (16)

where wk is the weight of the k-th design variable under
consideration and vk,n is the value of the k-th design variable
of the n-th capacitor bank.

IV. OPTIMIZATION RESULTS

The figures presented pertain to the Silicon Carbide inverter
of Fig. 5 (a). The capacitor bank was designed in [18] using
sequential tightening, which acts as a benchmark for the
performance of the other optimization algorithms.

The cost function of (16) was used to generate a cost for
the data which was then fed into all algorithms. The results

of the optimizations in terms of solver time and other relevant
design parameters for each inverter are given in Table I. While
sequential tightening did not achieve the lowest cost in both
cases, the difference is not substantial when looking at a plot of
the film capacitor bank costs (Fig. 6 (a)). For the dual inverter,
the lowest volume did not correspond to the lowest cost. This
is because the number of capacitors was penalized and, for an
equivalent capacitor bank, 103 components would be required.

Specifically targeting the efficacy of simulated annealing,
Fig. 6 shows the results of 10 runs of the algorithm on
the cost function and its subsequent mapping to the dataset
when considering the volume and power losses. The global
minimum and a near-optimal local minimum are returned in
cost which, when plotted on the dataset, show a good result.

(a) Simulated annealing on the cost function.

(b) Algorithm output plotted on the film capacitor dataset.

Fig. 6: Ten runs of simulated annealing and the results.

The performance of simulated annealing can be graphically
compared with the manually chosen capacitor of sequential
tightening via Fig. 7. Both simulated annealing solutions have
a lower cost and fewer capacitors in the bank; however, only
one is smaller and has lower losses, whereas the other is
comparable in both categories. The most important difference,
though, is in height. The returned solutions have a height of
35mm and, thus, would be the inverter’s tallest components,
thereby increasing the system’s volume. In that sense, they
are sub-optimal solutions and the nuances of the design could
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TABLE I: Optimization methods and their performance.

Optimization Method Silicon Carbide Inverter Dual Inverter

Time (ms) Volume (dm3) Height (mm) Cost, J (k) Time (ms) Volume (dm3) Losses (W) Cost, J (k)

Convex 198.8 0.09 35 2.63 187.4 2.80 32 26.1
Pareto Optimality 0.45 [0.09, 2.57] [25, 108] [2.63, 49.1] 0.57 [2.80, 41.76] [20, 601] [26.1, 603.1]
Simulated Annealing 4.70 0.09, 0.12 35, 35 2.63, 3.43 4.8 2.80, 2.31 32, 18.6 26.1, 66.1
Brute Force 0.87 0.09 35 2.63 0.64 2.80 32 26.1
Sequential Tightening 18 0.11 25 4.37 1.5 3.20 32 85.4

not be captured by the algorithm without significant designer
insight and influence.

Fig. 7: Manual (red) and automated (otherwise) selections.

V. CONCLUSION

In this paper, a two-step method for the design and selection
of DC capacitor banks was proposed. Several optimization
methods were discussed and examined in detail. A novel
approach to the selection process was introduced through the
use of the simulated annealing algorithm to stochastically find
optimal and near-optimal designs. Using this methodology,
two highly power dense three-phase inverters were designed
with the capacitor bank carefully selected by sequential tight-
ening. The performance of the other optimization methods
were assessed relative to sequential tightening and were shown
to find the global optimum quickly and reliably. In terms
of computational effort and accuracy, simulated annealing
was shown to be a viable method for solving the discrete
component selection problem.
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