
An Optimization-Based Reduced Sensor Virtual
Flux Observer for PM Synchronous Machines

Michael Eull and Matthias Preindl, Senior Member, IEEE

Abstract—Cost remains a major obstacle to the
widespread adoption of electrified vehicles. Significant
research effort has been expended in trying to replace
hardware with software in systems in an effort to bring it
down. To accomplish this, phase current estimation has
emerged as a viable means of removing sensors from
electric drives. The plurality of work in the field employs
linear current observers, which suffer from a need for
machine anisotropy and periodic position-dependent non-
observability, both of which limit applicability. This paper
proposes an optimization-based methodology that elimi-
nates all estimation constraints. It is shown that the prob-
lem is always at least quasiconvex, permitting the estima-
tion of the dq fluxes under a set of operating constraints.
By way of an additional term in the cost function, the prob-
lem is made strictly convex for all operating conditions,
enabling efficient estimation of the unique dq fluxes. Exper-
iments validate the concept and show that the optimization-
based observer performs similarly to the linear observer in
the steady state with ringing after transients reduced.

Index Terms—Observers, estimation, permanent magnet
machines

I. INTRODUCTION

A major impediment to the development and adoption of
electrified vehicles has been and remains the cost. One of
the most promising ways to reduce cost has been to supplant
hardware with software [1]. Two of the more popular examples
of such an act are the removal of the position [2]–[5] or current
[6]–[15] sensor(s) in the drive of an electrified vehicle.

The traditional current estimation problem has primarily
landed within two overarching categories: reduced sensor (two
or one) and sensorless. In the reduced sensor camp, these
are further sub-divided into estimation via a DC-link current
sensor [6]–[9] and estimation via phase current sensors [10]–
[13], both with some underlying algorithm present. In the
sensorless camp, these have tended to rely on an algorithm [14]
or a precise model [15]. Current sensorless estimation suffers
from parameter sensitivity issues, making reduced sensor tech-
niques attractive for their ability to compensate for inevitable
modelling errors and parameter variation while still seeing
system cost reductions. Phase current estimation as a whole is
a promising approach as it avoids the problems associated with
estimation via the DC-link current, such as added inductance
and the need for an expensive, high bandwidth sensor.
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Typical three-phase electric drives employ three current
sensors, where one is redundant to meet standards requiring
redundancy, such as ISO 26262: Road vehicles — Functional
safety. Recent work has seen a push towards removing the
redundant sensor and adding a current observer as a fail safe
to guard against a failure that results in insufficient information
to control the system [10]–[13]. Given the low probability of a
current sensor failure (one popular current sensor series has a
mean time between failure of over two million hours [16]), the
removal of one sensor and implementation of an observer is a
clear choice for realizing a cost savings whilst simultaneously
satisfying mandated redundancy requirements.

A reduction in cost through sensor removal comes at the
expense of a degradation in performance relative to a two
sensor system, where a one sensor linear observer PMSM
drive exhibits: overshoot in the step response and associated
transient settling time, both of which become more pronounced
with parameter error due to one eigenvalue of the closed-loop
system being determined by the machine’s L

R time constant;
and a small increase in the steady state current ripple. In terms
of robustness, both the two and one sensor linear observers
can be made stable with appropriate feedback gain selection;
however, the one sensor observer imposes requirements for
estimability tied to the type of PMSM and the rotor’s position,
whereas the currents are always estimable with two sensors
[13]. For low cost systems where torque quality is not critical
or ones where performance can be derated in case of a sensor
failure, these degradations may be an acceptable tradeoff.

The existing phase current observers in literature are de-
signed with a linear Luenberger observer [10]–[13], which is
iterative by nature and requires several sampling intervals to
converge. Optimization-based approaches offer the promise of
instantaneous estimation, compatibility with nonlinear models
and enhanced performance over more traditional techniques,
such as a linear Luenberger observer. Indeed, optimization has
been shown to be an effective and efficient tool for many
control and estimation problems [3]–[5], [17]–[19].

However, the employment of optimization techniques for
estimating the missing quantities resulting from the removal
of sensors has largely been restricted to the position sensorless
problem [3]–[5]. While a position sensorless scheme could
realize a greater cost savings than a current observer, it affords
no redundancy and introduces risk, whereas a current observer
can realize a guaranteed cost savings with minimal risk, owing
to the redundancy it provides as a fail safe. Therefore, this
work seeks to extend the optimization methodology beyond
position estimation to flux (current) estimation, with a focus
on estimation with only one phase current sensor.



Relative to previous reduced current sensor research, the
presented optimization-based virtual flux observer sees one
major benefit: there are no restrictions on estimation. In [13],
the conditions for observability were derived and found to
require the PMSM to be anisotropic, meaning only inte-
rior PMSMs could benefit from the method; moreover, non-
observability was found to be position-dependent and, while
more of a theoretical than a practical limitation, estimation
accuracy could be limited close to these points. The proposed
optimization-based virtual flux observer, on the other hand,
natively eliminates the anisotropy requirement, making the
method applicable to both interior and surface mount PMSMs.
When the cost function is augmented with an additional term,
the position dependency is also removed and the fluxes (cur-
rents) are always estimable. In terms of quantifiable metrics,
the optimization-based methodology exhibits similar rise time
and steady state RMS ripple current when compared to the
other reduced sensor phase current observers in literature [10]–
[13]. An added benefit sees ringing after transients reduced.

II. PROBLEM FORMULATION

The formulation of the virtual flux observer follows closely
that of the position observer presented in [5].

The discrete-time state-space equations can be written as

x+ = f (x, u, p) (1a)
y = g (x, p) , (1b)

where x, u and p are vectors of the states, inputs and
parameters of the system, respectively; x+ is the state vector
at the next time step; and y is the output of the system at
the current time step. These two functions describe the input-
output relationship, be it linear or nonlinear, of the system. The
size of each vector is: x+ ∈ Rm×1, x ∈ Rm×1, p ∈ Rl×1,
u ∈ Rn×1, y+ ∈ Rr×1 and y ∈ Rr×1, where m, l, n and r
designate the number of states, parameters, inputs and outputs
of the system, respectively.

An observer estimates the states of a system by way of its
inputs and the resultant outputs. These states are intrinsically
linked to the parameters of the system p, some of which may
also be unknown. Thus, estimating the states can also be a
problem of estimating the system’s parameters. It becomes
beneficial, then, to define a combined vector linking them to-

gether. Therefore, let z =
[
(x+)

T
xT pT

]T
∈ R(2m+l)×1.

The vectors x+, x and p can then be written as the
product of a matrix and the state-parameter vector z, which
extracts the relevant components. In this way, the vec-
tors of interest are: x+ =

[
Im×m, 0m×(m+l)

]
z, x =[

0m×m, Im×m, 0m×l
]
z and p =

[
0l×2m, Il×l

]
z. I and

0 are identity and zero matrices, respectively.
Recalling the system described in (1), a function comprised

of the outputs y, the inputs u and the state-parameter vector
z can be built with the form

h
(
y, y+, u, z

)
=

f (x, u, p)− x+

g (x, p)− y
g (x+, p)− y+

 = 0. (2)

where h ∈ R(m+2r)×1.

Note that an additional equation has been added when
comparing (1) and (2). This extra equation allows for direct
comparison between the estimated next-step state and the
actual value measured, providing more information to the
estimator. Note also the constraint placed on the function: that
every term should be equal to zero. This is equivalent to stating
that the estimates must match the measurements.

The last component required in the formulation is a cost
function, whose minima imply the minima of h. A quadratic
form is beneficial as it makes the function quadratic, which
permits easier study of its convexity and a simpler means of
solving. Because some z is being estimated to satisfy h, it
becomes notationally convenient to use the widely-accepted
circumflex above a variable to denote an estimate, such that z
becomes ẑ. The cost function is then written as

c = h
(
y, y+, u, ẑ

)T
Nh

(
y, y+, u, ẑ

)
, (3)

where N is a square positive definite weighting matrix and is
used to give different weightings to terms in the cost function.
Per (2), N ∈ R(m+2r)×(m+2r).

The optimization problem can then be written as

z∗ = minimize
ẑ

c (ẑ), (4)

which is equivalent to stating that some optimal variable(s) z∗

are sought that minimize the cost function c.

A. Key Mathematical Tools
The Jacobian is a matrix of the first partial derivatives of

an equation. Its key use in this work is to determine whether
the system at hand is identifiable; i.e. whether the states can
be uniquely estimated. The Jacobian is

Jh =


∂h1

∂z1
∂h1

∂z2
. . . ∂h1

∂zn
∂h2

∂z1
∂h2

∂z2
. . . ∂h2

∂zn

...
...

. . .
...

∂hn

∂z1
∂hn

∂z2
. . . ∂hn

∂zn

 . (5)

The Hessian is a matrix of the second derivatives of a
function. It finds use in not only the act of optimization (e.g.
Newton’s method), but also in determining the convexity of
the problem. The Hessian is computed as [5]

Hc =


∂2c
∂z21

∂2c
∂z1∂z2

. . . ∂2c
∂z1∂zn

∂2c
∂z1∂z2

∂2c
∂z22

. . . ∂2c
∂z2∂zn

...
...

. . .
...

∂2c
∂z1∂zn

∂2c
∂z2∂zn

. . . ∂2c
∂z2n

 = 2JThJh. (6)

The bordered Hessian is a useful tool for determining the
convexity of a problem when the Hessian is incapable of
determining it (second-order tests are inconclusive). It is

BH =


0 ∂c

∂z1
. . . ∂c

∂zn
∂c
∂z1

∂2c
∂z21

. . . ∂2c
∂z1∂zn

...
...

. . .
...

∂c
∂zn

∂2c
∂z1∂zn

. . . ∂2c
∂z2n

 =

[
0 ∇cT

∇c Hc

]
. (7)

These definitions find significant use in section IV. Addi-
tional details regarding these tools can be found in [20].
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Fig. 1: System block diagram with the virtual flux observer.

III. MODELLING

The system under study is presented in Fig. 1 and the
designed observer is summarized in Fig. 2. This section
describes the major components required to realize it.

Note that the model is defined with states λ+
dq and λdq ,

i.e. next-step and current-step values, whereas the inputs to
the cost function in Fig. 2 are λdq and λ−dq , i.e. current-
step and previous-step values. The former owes to convention
for discrete-time state-space systems and observers/estimators
[21], [22]; the latter is a result of a physical system: a future
measurement y+ cannot be realized. The two notations are
equivalent, with the former used to conform with convention.

A. Coordinate System Transformations

To facilitate modelling and control implementation, as well
as calculations, a series of transformations are made to change
from time-varying sinusoids–which can be difficult to track
and control–to constant (DC) quantities.

The first step in the coordinate system transformation pro-
cess is to use the Clarke transform, which converts the three-
phase system to an equivalent two-phase orthogonal system of
sinusoids. It is performed as xαβ = Txabc, where

T =
2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
. (8)

Still operating with sinusoids, it becomes necessary to apply
a second transformation, the Park transform, to convert the
two-phase system to an equivalent DC representation. It is
achieved by multiplying the αβ system with a rotational matrix
that rotates at the same rate as the sinusoids, such that the
quantities appear DC. This conversion is computed as xdq =
P (θ)xαβ , where

P (θ) =

[
cos θ sin θ
− sin θ cos θ

]
. (9)

Because pulse width modulation (PWM) is enacted on a
per-phase basis, it becomes necessary to reverse the process
and convert back from dq to abc to generate the duty cycles
that apply voltage. Reversing the Park transform is simple,

as its transpose is its inverse; i.e. P−1 (θ) = PT (θ). The
Clarke transform, however, requires more consideration as the
matrix is not square. The inverse of a non-square matrix can
be calculated by using the Moore-Penrose pseudoinverse [23],
designated by the superscript †. Applying this operator to the
Clarke transform T yields its pseudoinverse

T† =
3

2

 1 0

− 1
3

√
3

3

− 1
3 −

√
3

3

 . (10)

An additional transformation is introduced, which is the
so-called sensor selection transform. The purpose of this
transformation is to determine what current sensors are present
in the system. It is written as

Q =

phA 0 0
0 phB 0
0 0 phC

 , (11)

where phA, phB and phC ∈ {0,1} and denote the absence
(0) or presence (1) of a sensor.

When transforming directly from dq to abc with only one
phase current sensor present, i.e. i = QT†P−1 (θ) idq =
CP−1 (θ) idq , the process can be simplified to

CP−1 (θ) =
[
cos
(
θ − k 2π

3

)
, − sin

(
θ − k 2π

3

)]
, (12)

where k ∈ {0,1,2} and denotes what sensor is present. As a
result, k = 0 means the phase A sensor is present, whereas
k = 2 means phase C is.

B. Electric Machine Dynamical Model

The PMSM model is first introduced with flux as the states–
known as virtual flux–and in the αβ frame, both of which are
used for problem generalization. Virtual flux has the benefit
of providing a more generic problem formulation and, as a
result, has found use in a wide variety of applications: PMSMs
[5], [17]; switched reluctance machines [24]; and grid-tied
inverters [25]. The model is converted to dq when appropriate
to better mirror other current observers in literature [10]–[13].

The discrete-time αβ flux model of a PMSM is realized
by applying a first-order discretiziation to the continuous-time
model defined in [17] and is written as

λ+
αβ = λαβ + Ts (vαβ −Riαβ) = λαβ + Tsūαβ (13a)

θ+ = θ + Tsω, (13b)

where vαβ , iαβ and ūαβ are the αβ voltages, currents and
compensated terminal voltages, respectively, applied to the
PMSM; R is the per-phase stator resistance; θ and ω are the
electrical position and speed, respectively, of the PMSM; and
Ts is the sampling period.

The PMSM model (13) is given in flux, whereas the
measurements available are in current (y = i, y+ = i+).
Conversion between current and flux can be achieved by way
of the current-flux map of the machine L and its inverse
L−1, performed as λαβ = L (iαβ) and iαβ = L−1 (λαβ),
respectively. Typically, the mapping L is known in dq and
not αβ, requiring an additional Park transformation within
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the current-flux map function, such that λdq = L (P (θ) iαβ)
and idq = L−1 (P (θ)λαβ). To convert from dq to αβ,
an inverse Park transformation must be applied, i.e. λαβ =
P−1 (θ)L (P (θ) iαβ) and iαβ = P−1 (θ)L−1 (P (θ)λαβ).

Substituting (13) into (2) with the aforementioned caveats
gives the h function for the PMSM in αβ

hαβ
(
i, i+, ūαβ , ẑ

)
=


λαβ + Tsūαβ − λ+

αβ

CP−1 (θ)L−1
(
P (θ) λ̂αβ

)
− i

CP−1 (θ+)L−1
(
P (θ+) λ̂+

αβ

)
− i+

 ,
(14)

recalling the relationship with (2): f (x, u, p) is the state

equation of the PMSM in the αβ frame and g (x, p) is the
output equation of the state-space system. Simplifying the
transforms applied to the current-flux map per (12) yields
CP−1 (θ)L−1

(
P (θ) λ̂αβ

)
= ı̂, such that hαβ is taking the

difference ŷ − y = ı̂− i.
An adjustment must be made to the h function of (14) by

noting a limitation of the observer when only one phase current
sensor is available. The formulation as it stands requires
precise knowledge of x+ = λ+

αβ , which can only be known to
such a degree when at least two sensors are available. Hence, it
becomes challenging to meaningfully minimize the difference
f (x, u, p) − x+. Therefore, it is useful to shift this equation
from the cost function explicitly to being a constraint on the
problem; i.e. it is mandated that x+ = f (x, u, p), changing
the optimization problem to

z∗ =
minimize

ẑ
h̄αβ

(
i, i+, ūαβ , ẑ

)T
Nh̄αβ

(
i, i+, ūαβ , ẑ

)
subject to λ̂+

αβ = λ̂αβ + Tsūαβ
(15)

where hαβ has been modified to h̄αβ , which is defined as

h̄αβ
(
i, i+, ūαβ , ẑ

)
=

 CP−1 (θ)L−1
(
P (θ) λ̂αβ

)
− i

CP−1 (θ+)L−1
(
P (θ+) λ̂+

αβ

)
− i+

 .
(16)

As a result of this adjustment, N ∈ R(m+2r)×(m+2r) →
N ∈ R2r×2r and h ∈ R(m+2r)×1 → h ∈ R2r×1.

For commonality with other phase current observers [10]–
[13], a change to the dq model is made by recalling that λdq =
P (θ)λαβ . Furthermore, a simplification is made by changing
to a linear model by making the assumption that saturation
does not occur and that the flux is linearly proportional to the
current in the stator windings; i.e. the current-flux map is

λdq = L (idq) ≈ Ldqidq + ψdq, (17)

with Ldq = diag ([Ld, Lq]), a diagonal matrix of the d- and
q-axis inductances, respectively, of the machine; and ψdq , the
dq flux of the permanent magnets, where ψdq = [ψ, 0]

T .
The optimization-based observer is general enough to be

applied to the nonlinear model and, indeed, it is in [5];
however, it is prudent to examine the linear model first to



assess concept feasibility. Applying both the change to the dq
model and the linearization of (17) changes (16) to

h̄dq
(
i, i+, ūdq, ẑ

)
=

 CP−1 (θ)L−1
dq

(
λ̂dq − ψdq

)
− i

CP−1 (θ+)L−1
dq

(
λ̂+
dq − ψdq

)
− i+

 ,
(18)

where λ̂+
dq = (I− TsωJ) λ̂dq+Tsvdq−TsRı̂dq , resulting from

the discretization and transformation of λ̇αβ to λ̇dq , and J =[
[0, 1]

T
, [−1, 0]

T
]
, which accounts for cross-coupling effects

between the two axes in the dq frame. In an attempt to simplify
the problem, Rı̂dq is assumed to be small enough to neglect,
allowing for the removal of an additional nested λ̂dq term from
the formulation.

With the formulation finalized in dq, it is beneficial to
present how (2) became (18) by specifiying what the initial,
generic variables are, as well as the size of each vector in
the system. For the PMSM drive system, there are two states
and two next-step states (m = 2), the dq fluxes, x = λ̂dq =[
λ̂d, λ̂q

]T
and x+ = λ̂+

dq =
[
λ̂+
d , λ̂+

q

]T
, respectively; four

parameters (p = 4), p =
[
Ld, Lq, R, ψ

]T
; two inputs

(n = 2), the dq voltages, u = vdq =
[
vd, vq

]T
; and one

output (r = 1), the measured current y = i and the next-step
measurement y+ = i+. Because only one phase current is
measured every Ts, h ∈ R2×1, making N ∈ R2×2.

The mechanical equations for the system are neglected in
the modelling of the observer, save for noting in (13) the
relationship between position and speed, as a consequence of
the linearization of the system. This linearization is achieved
by assuming that the mechanical time constant is much larger
than the electrical one and is commonly made for current
observers [10]–[13] and automotive systems in general, where
intertia is large due to the vehicle’s mass.

Many systems define a reference torque, Tref , that deter-
mines the dq currents to be used in the field-oriented control
algorithm given a desired operating point. The electromagnetic
torque equation can be used to determine these currents. In the
dq frame, it is written as

Te =
3

2
pp (ψiq + (Ld − Lq) idiq) , (19)

where pp is the number of pole pairs in the electric machine.

C. Cost Function
The cost function is the same as described in section II and

is given in (3). It can be built for the problem at hand by
substituting for h with (18).

The addition of a so-called filter term, introduced in [3],
can be used to help the problem in two ways: 1) it penalizes
large changes from the expected estimate; and 2) it adds a
convex term to the problem, which can help with solving a
poorly conditioned, albeit convex, system. The modified cost
function is written as

c̄ = hTNh+ ρ
∥∥∥λ̂+

dq − λ
g
dq

∥∥∥2

2
, (20)

where ρ is a non-negative number and λgdq is the initial guess
of the dq flux given by the state-space model, calculated as

λgdq = (I− TsωJ) λ̂dq + Tsvdq , which is a constant value
during the optimization and is updated every sampling period.

The filter term’s significance is that it suggests the neigh-
bourhood of the optimal flux λ∗dq to the estimator via the initial
estimate λgdq . How much the observer relies on this initial
estimate depends on the value of ρ: if ρ is large, then it will
rely significantly on λgdq; if ρ is small, then the observer will
start in the neighbourhood of λgdq but will be permitted to find
a different flux; and if ρ is zero, the estimate relies exclusively
on the model of the system, which is the cost function (3).

The filter term can also be thought of as a limit on how
quickly the estimated flux that will be applied to the system
is allowed to change. With a large ρ, the estimated flux is
stipulated to be close to the initial guess and will change at
roughly the same rate as that guess (i.e. behaves like a linear
observer). If ρ is small, then a larger difference is permitted
as the optimizer searches for what it believes is the true flux,
enabling more rapid changes in value.

D. Steady State Offset Compensation
In a practical system, the system’s parameters are often

specified within a tolerance band and can change even more
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during operation; for example, as the motor heats up. In lieu
of a detailed model, an integrator term has been added to the
observer, whose purpose it is to compensate for modelling
errors. The compensator follows the same structure as the one
described in [13]: the estimated dq currents are converted to
their three-phase equivalents and only the one being compared
with the measurement is retained via ı̂ = CP−1 (θ) ı̂dq . Then,
the difference between measurement and estimate is taken, giv-
ing the error signal e = i− ı̂, which is converted to dq via the
incomplete transformation edq =

(
CP−1 (θ)

)†
e = P (θ)C†e

and fed to the proportional-integral (PI) compensator, gener-
ating the compensation signal. As a result of the incomplete
abc to dq transformation, sinusoidal oscillations at two times
the fundamental frequency are injected into the estimate. If
the error is small, then these oscillations will also be small.

A major benefit of using a PI compensator to perform steady
state error compensation is that a detailed current-flux map of
a machine is not necessary, which is beneficial for industrial
applications where a machine is not extensively characterized
and nameplate parameters are primarily employed. For ap-
plications where the machine is known well and a detailed
current-flux map is known, then the PI compensator could be
omitted and the steady state oscillations it injects avoided.

IV. IDENTIFIABILITY AND CONVEXITY ANALYSES

Identifiability and convexity are first studied for the base
case of the system, i.e. with no filter term added (ρ = 0). Once
the observer is understood in full via Theorems 1 through 4,
the filter term is added (ρ > 0) to augment the cost function,
with the benefit presented in Theorem 5.

A. Identifiability

Identifiability is the property that the parameters of a system
can be uniquely estimated from inputs and measurements.
In this work, identifiability is used to estimate the states of
the system, with this change in goal achieved by taking two
adjacent samples, y and y+, and treating them like parameters
via the state-parameter vector z.

Identifiability and observability are similar concepts, where
being observable means that a unique set of states can be
determined from the inputs and outputs of the system. Given
their similarity, it should be expected that the conditions for
unique estimation should be similar, which are shown and
compared with [13] in Theorem 1 and Corollary 1.

A system is identifiable when the Jacobian is full column
rank [26]–[28]. With this information in hand, it is possible to
determine whether the optimization-based virtual flux observer
is identifiable when only one phase current sensor is present
by studying h̄dq , as given in (18).

Theorem 1. Let a motor drive have one current sensor on
phase k ∈ {0,1,2}. The system is identifiable if and only if
ω 6= 0 and

cΣ∆ cos (Tsω + α)− 2LΣL∆Tsω cos
(
2θ − k 4π

3 + Tsω
)

(L2
Σ − L2

∆) (T 2
s ω

2 + 1)
6= 0,

with L∆ = 1
2 (Ld − Lq) and LΣ = 1

2 (Ld + Lq).

Proof. The Jacobian Jh is full rank if and only if detJh 6= 0,
where detJh =

cdq cos (Tsω + α)−
(
L2
d − L2

q

)
Tsω cos

(
2θ − k 4π

3 + Tsω
)

2L2
dL

2
q (T 2

s ω
2 + 1)

.

Equivalence between statements can be shown by applying
the following identities to detJh: L2

d + L2
q = 2

(
L2

Σ + L2
∆

)
,

L2
d − L2

q = 4LΣL∆ and LdLq =
(
L2

Σ − L2
∆

)
. Furthermore,

the trigonometric identity a cos(x)−b sin(x) = c cos(x+α) is
employed, where c =

√
a2 + b2 and α = arctan

(
b
a

)
. The dq

terms are adq =
(
L2
d + L2

q

)
Tsω and bdq = 2LdLq . Making

the appropriate substitutions and employing once more the
same trigonometric identity, it can be shown that the Σ∆ terms
are aΣ∆ =

(
L2

Σ + L2
∆

)
Tsω and bΣ∆ =

(
L2

Σ − L2
∆

)
. Note that

the denominator is irrelevant, as the term L2
dL

2
q

(
T 2
s ω

2 + 1
)

=(
L2

Σ − L2
∆

)2 (
T 2
s ω

2 + 1
)

is always non-zero; therefore, it
does not impact the determinant being equal to zero. �

A major difference between this work and that of [13]
is that the optimization-based virtual flux observer does not
require anisotropy (Ld 6= Lq) for estimation. Since excessive
saturation of a PMSM can lead to isotropy (Ld = Lq), this
becomes an attractive property of the method; however, the
tradeoff is that zero-speed operation becomes an issue. This
limitation can be overcome by use of signal injection, as in
[3] and [5], or by adding the filter term ρ to obtain the cost
function (20). The latter approach is discussed in Theorem 5.

Corollary 1. With one current sensor present and ω 6= 0, the
system is non-identifiable four times over a 2π period.

Proof. This can be shown by setting detJh = 0 and solving
for θ. Doing so yields the four non-identifiable positions

θ1 =
1

2

(
arccos (x) + k

4π

3
− Tsω

)
(21a)

θ2 = θ1 + π (21b)

θ3 =
1

2

(
2π − arccos (x) + k

4π

3
− Tsω

)
(21c)

θ4 = θ3 + π, (21d)

where x = cΣ∆ cos (Tsω + α) (2LΣL∆Tsω)
−1, with the same

substitutions for aΣ∆, bΣ∆, cΣ∆ and α as in Theorem 1. �

The result of Corollary 1 can be plotted as well and is
shown in Fig. 3. There is a striking resemblance between
the determinant and zero-level set of the Jacobian and the
observability matrix O shown in [13]. When comparing the
non-observable and non-identifiable positions, both methods
return near-identical values. These similarities give credence
to the equivalency of the methods for phase current estimation.

B. Convexity
Having shown that the formulation is identifiable under

certain conditions, it next becomes necessary to evaluate
whether the system is convex, quasiconvex or non-convex.
Convexity, or the lack thereof, is important for not only being
able to find a unique set of states that satisfy the system,
but also for being able to efficiently solve for the minima.
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Fig. 5: Torque step (iq = 0A → iq = +10A, id = 0A at t = 2.5ms) experimental validation with (a) no observer parameter
error, ρ = 10; (b) no observer parameter error, ρ = 0.01; (c) observer parameter error; ρ = 10; and (d) observer parameter
error, ρ = 0.01. Shown are the mechanical speed (N ), electromagnetic torque (Te), measured dq currents (idq) and estimated
dq currents (̂ıdq).

Convexity is shown by first studying the cost function (3), i.e.
ρ = 0, before proceeding to make ρ > 0 and using (20).

Theorem 2. Let a motor drive have one current sensor on
phase k ∈ {0,1,2}. The system is always positive semi-definite.

Proof. The Hessian is defined as (6). It can be shown that, for
any vector x, the following holds: xTHcx = 2xTJThJhx ≥ 0;
hence, the system is always positive semi-definite. �

The system being positive semi-definite with respect to
the Hessian means that it is not possible to tell whether the
function is convex or not, as detHc = 0 means that the second
derivative test of the function is inconclusive. Strict convexity
is when the Hessian is positive definite and guarantees that a
unique global minimum can be found. Theorem 3 discusses
the necessary conditions for strict convexity.

Theorem 3. Let a motor drive have one current sensor on
phase k ∈ {0,1,2}. The system is strictly convex when ω 6= 0
and the electrical position is not one of those listed in (21).

Proof. Because Hc = 2JThJh, it follows that, when detJh =
0, detHc = 0. Thus, when ω = 0 or when the position is one
of those listed in (21), detJh = detHc = 0 and the system
is not strictly convex. Thus, ω 6= 0 and θ 6= (21) result in
detHc > 0, meaning the system is strictly convex. �

The other case arising from the Hessian being positive semi-

definite is when detHc = 0. Because the second derivative
test fails, alternative approaches must be used to determine the
convexity of the system. Theorem 4 discusses the details.

Theorem 4. Let a motor drive have one current sensor on
phase k ∈ {0,1,2}. The system is quasiconvex when ω = 0 or
θ = (21) (i.e. detHc = 0).

Proof. This can be shown by employing the bordered Hessian,
defined in (7). When all leading principal minors Dk ≤ 0, the
system is quasiconvex. The first and third leading principal
minors, i.e. D1 and D3, are both always zero; the second is

D2 = − ∂c
∂z1

∂c
∂z1

= −
(
∂c
∂z1

)2

≤ 0. Thus, all three leading
principal minors are ≤ 0 and the system is quasiconvex. �

Quasiconvexity is a beneficial property to have as it means
the domain and its sublevel sets are convex. What this implies
is that the function may not be globally convex, but it is convex
within the region of operation and a minimum can be found.

Note that the system can be made strictly convex without
restrictions by adding the filter term and using the cost function
(20). Through this modification, the observer is capable of
uniquely estimating the states λ̂dq without restrictions, which
is a significant departure from the linear observer of [13]. This
point is elaborated upon in Theorem 5.

Theorem 5. Let a motor drive have one current sensor on
phase k ∈ {0,1,2}. The system is always strictly convex when
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Fig. 6: Low (N = 20RPM ≈ 1% rated) speed steady state
experimental validation with (a) no observer parameter error
and (b) observer parameter error at id = 0A, iq = +10A and
ρ = 10. Shown are the mechanical speed (N ), electromagnetic
torque (Te), measured dq currents (idq) and estimated dq
currents (̂ıdq).

employing the cost function of (20), i.e. the filter term is added.

Proof. Because the system under study is linear, the Hessian
can be taken with respect to each component of the cost
function; i.e. Hc̄ = Hc + Hρ, where Hc is the Hessian of
the original cost function (3) and Hρ is the Hessian of only
the filter term. The sum of convex functions is convex [29];
hence, since Hρ is always convex, the resulting sum is convex
and the problem becomes always strictly convex. �

Theorem 5 can also be shown graphically by plotting the
contours of the determinant of the Hessian of the basic cost
function (3) and the modified cost function (20), as in Fig. 4
With ρ > 0, strict convexity becomes apparent.

In augmenting the cost function with the filter term, the
system is made strictly convex and all constraints on esti-
mation eliminated. This changes the identifiability conditions
previously derived, as discussed in Corollary 2.

Corollary 2. The addition of the filter term to the cost function
makes the system always identifiable.

Proof. This follows from the definition of the Hessian, where
Hc = 2JThJh. Taking the determinant of this gives detHc =
det
(
2JThJh

)
= 2 detJTh detJh. Since detHc̄ 6= 0, detJh 6=

0 and the system is always identifiable. �

V. OPTIMIZATION PROBLEM SOLUTION IMPLEMENTATION

In having shown the problem to be identifiable, the feasi-
bility of pursuing an optimization-based approach has been
demonstrated. Furthermore, by showing that the problem is
strictly convex with the added filter term, it has been proven
that the unique minima can be efficiently found without re-
striction. Therefore, in implementing a solution methodology,
it becomes unnecessary to use more than a simple algorithm,
such as Newton’s method. The basic Newton step is given by

xk+1 = xk − γH−1
c ∇c (xk) , (22)

where γ is a multiplier used to fine-tune the size of the
taken step, which has an optimal value of the inverse of the
maximum eigenvalue of Hc. At the end of each iteration, the
relative error between xk+1 and xk is assessed to determine
whether a solution has been found. This is performed as∥∥∥∥xk+1 − xk

xk

∥∥∥∥2

2

≤ ε, (23)

where ε is an error threshold defined as being acceptable for
the application. In practice, only a few iterations are required
to reach this condition and terminate the search.

VI. EXPERIMENTS

The optimization-based virtual flux observer has been exper-
imentally validated on a three-phase PMSM with parameters
as in Table I. The PMSM is connected to an induction
machine in a dynamometer configuration, as shown in Fig. 8.
Experimental validation entailed high and low speed torque
control and speed control with the observer providing the
currents to the field-oriented control algorithm.

TABLE I: PMSM parameters.

Parameter Nominal Quantity Introduced Error

Pole pairs (pp) 5 -
Stator resistance (R) 0.4Ω -100%
d-axis inductance (Ld) 10.5mH +20%
q-axis inductance (Lq) 12.9mH +40%
Permanent magnet flux (ψ) 0.3491Wb +10%

High speed torque control involved applying a current
(torque) step, bringing the PMSM from iq = 0A to iq = +10A
with id = 0A (Te = 26Nm) at a mechanical speed of
N = 1400RPM (set by the induction machine) and a DC-link
voltage of VDC = 700V . The steps were undertaken with and
without parameter error and with filter parameter ρ = 10 and
ρ = 0.01, the results of which are shown in Fig. 5. The PMSM
quickly reached the steady state with minimal overshoot in all
cases, even with extreme parameter error. Steady state current
ripple is comparable to the linear observer of [13], given in
Table II. The optimization-based observer exhibits superior
transient response, with less ringing after the torque step.

Low speed operation was realized by applying maximum
torque (Te = 26Nm with iq = +10A and id = 0A) while
rotating at N = 20RPM , which is approximately 1% of rated
speed (1800RPM). Like at high speed, the PMSM is controlled
well with the estimated dq currents, as shown in Fig. 6.
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Fig. 7: Speed step (N = 600RPM → N = 800RPM at t = 5.0ms) experimental validation with (a) no observer parameter
error, ρ = 10; (b) no observer parameter error, ρ = 0.01; (c) observer parameter error; ρ = 10; and (d) observer parameter
error, ρ = 0.01. Shown are the mechanical speed (N ), electromagnetic torque (Te), measured dq currents (idq) and estimated
dq currents (̂ıdq).

Fig. 8: The experimental setup.

Speed control is another important operating mode for
automotive and industrial applications. To show this, a speed
step was commanded, taking the PMSM from N = 600RPM
to N = 800RPM , with and without parameter error and with
ρ = 10 and ρ = 0.01, the results of which are given in Fig.
7. The system is controlled well with the estimated currents,
even with extreme observer parameter error. Like in the torque
control case, the system was controlled well with the observer.

The ρ parameter is a degree of freedom available in the

TABLE II: Comparison of observer RMS current ripple with
varying parameter error at N = 1400RPM.

Parameter Case Observer

Optimization, ρ = 10 Optimization, ρ = 0.01 Linear [13]

Table I Nominal 0.271 0.251 0.279
0.8Ld 0.237 0.216 0.275
1.2Ld 0.340 0.304 0.275
0.6Lq 0.289 0.392 0.275
1.4Lq 0.233 0.232 0.275
0.9ψ 0.305 0.286 0.275
1.1ψ 0.304 0.286 0.275
Table I Error 0.272 0.277 0.266

design process of the optimization-based observer, determining
how much trust is placed in the initial estimate provided to
the estimator. A large value of ρ places high trust in the
initial estimate, with the optimization process acting more as
a refinement of the guess; a small value of ρ places low trust
in the initial estimate, suggesting the neighbourhood of the
optimal flux that the optimizer then searches over. The impact
of high and low ρ are shown in Figs. 5 and 7, as well as in
Table II. Together, they show that ρ primarily impacts transient
operation with minimal influence on the steady state. A low
value of ρ positively benefits both torque and speed transients,
helping to smooth the response and reduce peak currents, both
of which are most visible in the former case, with slight benefit
to the latter. In the steady state, the RMS current ripple is very
similar for both values of ρ that were tested.



In terms of computational effort, the optimization-based
virtual flux observer requires approximately 1000 clock cycles
per iteration (about 5µs) with an error threshold ε = 0.1
on the 32-bit, 200MHz DSP being used. This is higher than
the 300 clock cycles (1.5µs) required for the linear observer
[13]; however, this increase may be acceptable, given the
wider applicability, reduced ringing after transients and greater
design flexibility the method affords.

VII. CONCLUSION

This paper presented an optimization-based virtual flux
observer that can accurately estimate the three-phase currents
of a PMSM with only one phase current measurement. While
similar in nature to the work presented in [13], the proposed
method extends the range of permanent magnet machines that
a one sensor observer can be used with by eliminating the need
for machine anisotropy. By augmenting the cost function with
a so-called filter term, all estimation constraints are eliminated.
Experiments demonstrate the equivalency of the two methods
in the steady state; however, the optimization-based observer
exhibits reduced ringing after transients. Design flexibility is
enhanced through the ability to tune the filter parameter ρ
and, with higher bandwidth relative to the linear observer,
greater response tuning of the field-oriented control algorithm
is possible. The sole drawback of the method is an increase
in computational time of several microseconds.
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