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Abstract—This paper outlines the design process of a
high-efficiency (99.5% peak) transformerless DC EV fast
charger in conjunction with relevant UL standards on con-
ducted harmonics and leakage current. The topology is
a non-isolated transformerless design which allows for
the elimination of the additional transformer volume and
losses that are present in galvanically isolated topolo-
gies. Methods for calculating optimal switching frequency
and inductance to minimize loss as a function of chosen
switching device and power level are provided. Filter sizing
and component values are chosen in conjunction with the
previously determined optimal switching frequency and
inductance. Heatsink design rationale are then derived.
Experimental efficiency, switching waveforms, and output
voltage and current quality results are provided. Industrial
topology feasibility is shown through experimental adher-
ence to relevant UL, IEC, IET, and IEEE standards.

Index Terms—Bidirectional EV charger, DC/DC converter,
electric vehicle supply equipment (EVSE), inverter, silicon
carbide (SiC), transformerless.

I. INTRODUCTION

RECENT years have brought significant advancements in
both the technology and popularity of Electric Vehicles

(EVs) [1], [2]. EV exclusive automakers have been proven
competitive and almost all previously combustion engine
exclusive automakers now have some form of EV in their
lineup. Many automakers have stopped the development of
new internal combustion engine designs, further affirming the
eventually inevitability of an EV centric future. EVs, however,
still lack both the refueling infrastructure and refueling times
associated with internal combustion vehicles. Methods of
improving charging times on the battery chemistry side are a
current area of research [3]–[5], however, it is also necessary
to ensure that the associated power electronics can support the
sufficient charging infrastructure and quick recharging times
required for mass adoption of EVs.

Society’s move towards EVs is also occurring at the same
time as its move towards renewable energy sources. This
presents a problem, as many renewable energy sources, such
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as wind and solar, are intermittent. Their power output is
not constant and depends on uncontrollable factors such as
the weather [6]. There are times when renewable energy
production is in excess and as a result gets curtailed, and
times when renewable energy production is insufficient and
requires fossil fuel plants to compensate. Some manner of
grid supporting energy storage, both on large and small scales,
can mitigate this intermittent renewable energy production
problem by charging when excess power is being generated
and discharging when increased power is demanded.

EVs have the unique ability to be used as energy storage
devices as their large internal batteries can be leveraged as
local grid supporting energy storage. This is a benefit for both
the EV owner as well as the grid it connects to. Owners can
save money by charging their EV when electricity prices are at
their lowest and then using that power when electricity prices
are at their highest [7]–[9]. The grid can use the charger and
EV as sources or sinks of reactive and real power during
spikes in demand [10]–[12]. [13] provides methods for this
integration, [14] discusses the effect mobile storage has on the
grid, and [15] gives methods for varying load compensation.
Utilizing an EV in this manner, however, requires both the EV
as well as the charger to be capable of bidirectional power
flow.

Care must be taken to ensure that the energy cost of using
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Fig. 1. Comparison of state-of-the art bidirectional EV chargers split into
three groups. The typical category does not use wide-bandgap (WBG)
devices. [16]–[38]
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Fig. 2. Galvanically isolated topology (top) vs equivalent transformerless
topology (bottom).

an EV as local power storage is minimal. The efficiency of
the power converter that interfaces the vehicle and the grid
is of increased importance in these applications as energy
passes through it twice. A symmetric converter with a one-
way efficiency of η will have a two way efficiency of η2,
denoting the increased emphasis on efficiency. Therefore,
any EV charger that can also provide grid services must
maintain high efficiency in both vehicle to grid (V2G) and grid
to vehicle (G2V) modes. Bidirectional chargers are already
present both in academia as well as industry, and the push
towards higher efficiencies is ever-present.

State of the art bidirectional academic chargers are exclu-
sively galvanically isolated and have peak efficiencies up to
99% which can be seen in Fig. 1. The charger proposed in
this paper is also bidirectional, but reaches peak efficiencies
up to 99.5%, improving upon the present state of-the art.
This is done through the use of a transformerless topology,
uniquely applied to this charger and described in the following
sections, which eliminates the losses and additional weight
associated with galvanic isolation. This type of transformerless
topology has been shown to be successful in photovoltaic
system applications in [39]–[42] as well as other automotive
applications [43], [44], but its application to EV charging is
unique.

This paper details the novel design process used to max-
imize the efficiency of chargers using this transformerless
topology. One charger is designed and built with all trade-
offs leaning towards efficiency. Another charger is built, using
the same design process, but with a compromise between
efficiency and volume. Equations for calculating the average
losses in the switching devices and inductors are derived.
Optimization for efficiency is then carried out using those
derived equations. Heatsink calculations are also provided. Ex-
perimental switching waveforms and efficiencies are provided.
Grid quality and leakage current results are shown to prove
this transformerless topology can be standards compliant.
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Fig. 3. Intended effect of zero voltage control on common mode voltage.

II. TOPOLOGY DESCRIPTION

The transformerless topology of this charger can be seen in
Fig. 2, included is a galvanically isolated equivalent topology
for reference. Removing the transformer has the potential to to
remove the losses, volume, weight, and size associated with it
as well as decrease the minimum number of required switching
devices on the DC/DC side. For reference, the high frequency
isolation transformer used in [36], a 10kW 1MHz bidirectional
converter, has a rough volume and price of .046L and $20
which can be removed through the use of this topology.
There are, however, additional control complexities associated
with removing the transformer that are out of the scope of
this paper but can be found in [45], [46]. [47] contains the
control design, including the requirements for internal power
flow balancing, for the hardware developed in this paper.
Furthermore, the transformer also provides voltage step-down
or step-up abilities, but these attributes are not necessary for
this application as the DC bus is set to a higher voltage than
both the AC and DC sides of the charger.

An important difference between the two topologies, aside
from the lack of galvanic isolation, is the connection of the
star point of the grid-side filter capacitors. The transformerless
topology connects this star point to the negative DC bus
(DC-) while the galvanically isolated topology allows this
node to float. As described in [45]–[47], these grid capacitor
voltages are measured and controlled to achieve a constant
common-mode voltage through zero voltage control. This
results in constant voltage between DC- and protective earth
as the neutral point of the grid can be assumed constant with
respect to protective earth, illustrated in Fig. 3. Controlling
the voltage between DC- and protective earth allows for the
current through the parasitic capacitance Cp to be driven to
nearly zero, resulting in the elimination of leakage current
without the use of galvanic isolation.

III. DESIGN PROCESS

A. Target Design Requirements
The hardware design requirements can be found in Table

I. In addition to these design requirements, this charger is
intended to be compliant with the UL 2231-2 and IEEE
1547 standards. The portions of these standards that are most
relevant to this paper relate to the limits on leakage current and
conducted current harmonics injected into the grid. UL2231-2
limits the leakage current by setting the limit on voltage across
the parasitics between DC- and protective earth to 10VRMS

for frequencies above 20Hz and less than 1MHz. IEEE 1547
places limits on the current harmonics which can be seen in
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TABLE I
DC FAST CHARGER REQUIREMENTS

Parameter Value
Grid Voltage 480VRMS,L−L

Grid Current 32ARMS

DC Bus Voltage 900VDC

Battery Voltage 150-650VDC

Battery Current 0-80ADC

Real Power 22kW
Apparent Power 25kVA

Tables II and III. IEC and IET standards in [48]–[50] dictate
that the maximum leakage current for human safety is 30mA.

The feasibility of chargers of this transformerless topology
in non-academic applications is demonstrated by proving
compliance with leakage current and grid harmonic standards.

B. Loss Estimation

There are two main sources of loss in chargers of this
topology, FET losses and inductor losses, that will dominate
its efficiency. FET losses can be split into two components,
switching loss (the energy lost during each switching event)
and conduction loss (associated with the nominal on resistance
of the FET). Similarly, inductor losses can be split into a
resistive loss within the winding and a hysteresis loss within
the core due to the switching produced varying magnetic
field. It is necessary to consider all four sources of loss
simultaneously during the design process as it is possible to
trade off loss in one area to another.

1) FET Losses: Rigorous quantification of FET losses must
consider the instantaneous operating point of the converter.
The DC/DC side of the charger can be considered to operate
in steady state, however, the AC/DC side output is a sine wave,
and as such output voltage Vout, output current Iout, and duty
cycle D are dynamic and can be written as

Vout(θ) = VDC

2 +
√
2Vout,RMS sin(θ) (1)

Iout(θ) =
√
2Iout,RMS sin(θ − ϕ) (2)

D(θ) = Vout(θ)
VDC

. (3)

where θ is the instantaneous phase of the output sine wave
voltage. ϕ is the phase difference between the output current
and the output voltage and can be considered a static value.

TABLE II
ODD ORDER HARMONIC CURRENT DISTORTION LIMITS.

Odd Harmonics 1-9 11-15 17-21 23-33 35-49 THD
% Distortion 4.0 2.0 1.5 0.6 0.3 5.0

TABLE III
EVEN ORDER HARMONIC CURRENT DISTORTION LIMITS.

Even Harmonics 2 4 6 8-50
% Distortion 1.0 2.0 3.0 Associated range in Odd Harmonics

The peak to peak inductor ripple current IL,p−p can then be
calculated with

IL,p−p(θ) =
D(θ) (1−D(θ))VDC

fsw(θ)Lsw
. (4)

The value of IL,p−p(θ) is used when quantifying both the
conduction loss and the switching loss. The conduction losses
can be calculated using

Pcond(θ) = Ron

(
Iout(θ)

2 +

(
1

2
√
3
IL,p−p(θ)

)2
)

(5)

where Ron is the datasheet specified nominal on resistance
of the FET and 1

2
√
3
I2L,p−p is the RMS value of the inductor

current ripple component.
The process for calculating the switching losses used in

this paper relies heavily upon a quantification of switching
energy as a function of drain current Id, gate resistance
Rg , and FET drain-source voltage Vds. The datasheet of the
SiCFETs used in this converter provides these values which
allows for the mapping of switching energies Eon(Id, Rg, Vds)
and Eoff (Id, Rg, Vds) to be formulated. Rg and Vds can be
considered static values as they will not change for a given
operating point and are not included in the following equations
for the sake of clarity.

As previously mentioned, the output current and voltage of
a single phase can be considered dynamic and therefore the
distinction between hard and soft switching over one cycle of
the grid must be considered. Analytically, this distinction can
be made with

Esw(θ) =
Eoff (Ia(θ)) + Eoff (Ib(θ)) Ia(θ) > 0, Ib(θ) < 0

Eon(Ia(θ)) + Eoff (Ib(θ)) Ia(θ), Ib(θ) < 0

Eoff (Ia(θ)) + Eon(Ib(θ)) Ia(θ), Ib(θ) > 0

(6a)

Ia(θ) = IDC − IL,p−p(θ)
2 (6b)

Ib(θ) = IDC +
IL,p−p(θ)

2 (6c)

where Ia and Ib are the peak and valley inductor current
values, respectively. Visually, the hard and soft switching
distinction can be seen in Fig. 4. This distinction is important
to make as turn-on energies can be significantly greater than
the turn-off energies.

IL

(b)

(a)

(c)

t

Fig. 4. Three different IL cases used in calculating FET switching loss
per cycle. a) turn-on loss at peak, turn-off loss at valley, b) turn-off loss
at peak, turn-off loss at valley c) turn-on loss at peak, turn-off loss at
valley.
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Fig. 5. Pareto front of inductance and FET loss/efficiency.

The switching loss Psw can then be found with

Psw(θ) = fswEsw(θ). (7)

Finally, the total FET loss PFET over one cycle of the grid can
be found by averaging the sum of both FET loss mechanisms
from 0 < θ < 2π

PFET =
1

2π

∫ 2π

0

(Pcond(θ) + Psw(θ))dθ. (8)

2) Inductor Losses: Rigorous quantification of inductor
losses can be a complex exercise. Inductor losses are calcu-
lated by splitting the total loss into two components, core loss
and copper (winding) loss. Copper loss can be calculated with

Pwinding(θ) = RDCIout(θ)
2+RPWM (θ)

(
1

2
√
3
IL,p−p(θ)

)2

(9)
where RDC is the DC winding resistance and RPWM (θ) is
the frequency dependant winding resistance of the inductor. As
the fundamental frequency within the inductor is the switching
frequency, and the switching frequency will change over one
cycle of the grid, RPWM (θ) is dynamic. The frequency
dependant component of the winding resistance is an intrinsic
value of the chosen winding wire gauge and type.

The core loss of the inductor can be calculated with

Pcore(θ) = kfsw(θ)
aBpk(θ)

b

= kfsw(θ)
a

(
4πNIpk(θ)10

−2

lg + (lm/µr)

)b

(10)

where k, a, b are coefficients of the core, typically supplied
by its manufacturer. Bpk(θ) and Ipk(θ) are the peak flux and
current densities, respectively, and are dynamic. N, lg, lm, and
µr are the turn number, air-gap, and length of the magnetic
path and permeability, respectively, and are static values of the
inductor.

In a similar manner to calculating the FET loss, the average
inductor losses are found by taking the average of the losses
over one cycle of the grid according to

PInductor =
1

2π

∫ 2π

0

(Pcore(θ) + Pwinding(θ))dθ. (11)

Fig. 6. Experimental charger prototypes. (a): Charger version 1. (b):
Charger version 2. (c) 450µH inductors used in version 1. (d) 50µH
inductors used in version 2.

Lastly, the total loss is simply

Ptotal = PFET + PInductor (12)

C. Switching Frequency and Inductance Optimization
The optimization is done by simultaneously sweeping the

L and fsw operating parameters. At each point in this two-
dimensional sweep the loss is calculated and recorded. These
sweeps are performed for two SiCFET variants to determine
the best for this application:

• CREE C3M0021120k SiC FET
• CREE C3M0032120k SiC FET

These sweeps are performed with the charger operating at
its rated power with the parameters found in Table I. The
common-mode voltage of the grid is placed at one-half of the
DC bus voltage. The battery parameters are held constant at
300V and 73.3A (22kW). The results of these sweeps can
be seen in Fig. 5, where the inductance is swept and the
switching frequency that produces the lowest loss at each value
of inductance is saved and recorded, which produces a Pareto
front of inductance vs. loss.

The general trend that can be seen in these plots is that
efficiency increases with inductance. The optimal operating
point to maximize efficiency was placed in the range of L =
450µH and fsw = 20kHz as inductances higher than this

Fig. 7. One of the six segments used to create the battery.
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Fig. 8. 3d charger prototype renderings. (a) Charger version 1. (b)
Charger version 2.

value can be considered past the point of diminishing returns
with respect to efficiency. However, by modern standards, this
is a relatively low switching frequency and a high inductance.
This will result in a relatively large charger volume. Another
point along this curve at L = 45µH and fsw = 80kHz,
is explored to demonstrate the relationship between size and
efficiency. Two prototypes are constructed, version 1 at the
450µH point and version 2 at the 45µH point, and the results
are discussed in Section IV.

D. LCL Filter
Design of the LCL filter, highlighted in Fig. 2 of the overall

topology, hinges on two requirements. First, the filter as a
whole has to remove sufficient high frequency components of
the PWM waveform to maintain compliance with the standards
listed in Tables II and III. The resonant frequency of this filter
is calculated in conjunction with the switching frequency, and
is set to be less than one half of the switching frequency
in conjunction with. The resonant frequency of this filter is
calculated with

fres =
1

2π

√
Li + Lg

LiLgCf
. (13)

With Li chosen in the previous section for maximum effi-
ciency, Cf can be sized in conjunction with ripple voltage

TABLE IV
PARAMETERS OF VERSION 1 AND VERSION 2 PROTOTYPES

Parameters Values
Rated power 22kV A
Grid voltage 480VAC,L−L

Battery voltage 200− 650VDC

DC Bus voltage 900V
Switching frequency V1:20kHz ; V2:80kHz
Switching inductor V1:450µH ; V2:45µH

Output inductor 45µH
Filter capacitance V1:36µF ; V2:12µF

DC bus capacitance 216µF
Peak Efficiency V1:99.5 % ; V2:98.3 %

Charger power density V1:0.12kW/L ; V2:0.26kW/L
Power electronics power density V1:1.54kW/L ; V2:2.31kW/L

Fig. 9. Vds and Vgs of one phase with a DC bus voltage of 900V.

Fig. 10. 3kVA to 9kVA load step.

requirements. (4) can be used to calculate ripple current.
Neglecting the effect of Lg , ripple voltage can be calculated
as a function of ripple current using

Vout,p−p =
IL,p−p

8fswC
. (14)

Considering a value of 22A for IL,p−p, a desired ripple voltage
of 5V yields a minimum value of 27.5µF for Cf . This, in
conjunction with (13), gives a required minimum Lg of 9.4µH
for the prototype with Li = 450µH . An identical process is
repeated for the prototype version with Li = 45µH .

TABLE V
HEATSINK DESIGN SPECIFICATIONS

Parameter Value
PFET 26W

TAmbient 40◦C
TJunction,max 100◦C

RθJC 0.32◦C/W
RθPad 0.25◦C/W

RθHeatsink 0.13◦C/W
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Fig. 11. Rated power charging with 200V battery.

Fig. 12. Rated power discharging with 200V battery.

E. Heatsink Calculations

The physical layout of this charger is separated into six
phases where each phase has its own heatsink. The loss per
phase at the previously chosen operating point was determined
to be 26W during the optimization process. Fujipoly SARCON
XR-m thermal pads of of 1mm thickness in conjunction with
readily available server CPU heatsinks are used in this applica-
tion. Conservative values were used for maximum allowable
FET junction temperature Tjunction along with the ambient
temperature Tambient. The maximum FET power dissipation
can be calculated with

Pdiss =
TJunction − Tambient

1
2 (RθJC +RθJC) +RθHeatsink

, (15)

which represents the parallel combination of two FETs and
thermal pads in series with the heatsink, where each FET and
thermal pad are in series. Using (15) with the values in Table V
yields a maximum heat dissipation in the range of 140W, suf-
ficient for cooling the FETs under the previously determined
operating conditions. Water cooling was considered for this
application, however, the excess complexity associated with it
as well as the insignificant thermal requirements of this charger
makes it unnecessary.

Fig. 13. Rated power charging with 300V battery.

Fig. 14. Rated power discharging with 300V battery.

IV. EXPERIMENTAL RESULTS

Both versions of the charger can be seen in Figs. 6 and
8 and their general operating parameters in Table IV. One
of the six series segments used to create the battery can be
seen in Fig. 7. Fig. 8 shows that the version 2 charger has an
over 50% reduction in volume from the version 1 prototype,
which is achieved through the increased switching frequency
and reduced inductance at the cost of efficiency.

A. Switching Waveforms

The switching waveforms can be seen in Fig. 9. No over-
shoot is measured on the Vds voltages of neither the upper FET
nor lower FET. Minimal ringing is observed in the signals that
drive the gates of the FETs. None of the phases are interleaved.

B. Transient Performance

Transient performance can be seen in Fig. 10 where the
output power is stepped from 3kVA to 9kVA. During this load
step the DC bus voltage remains constant and no noticeable
fluctuations on the grid voltage can be seen. The grid current
of a single phase shows an as expected increase, which is also
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Fig. 16. Power factor control demonstration by varying the reactive
power while active power is held constant.

Each color represents a different desired power factor test
case.

reflected in the grid inductor current. No instabilities are noted
during this transient.

C. Power Tests

This section shows experimental results of the charger op-
erating at rated power in both charging mode and discharging
mode for two different battery voltages. Three phase grid
currents and voltages as well as battery current and voltage
are provided. Figs. 11 and 13 show the charger operating at
rated power to in charging mode. Figs. 12 and 14 show the
charger operating at rated power in discharging mode.
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Fig. 17. THD performance as a function of power.

D. Power Factor
As the AC/DC side of this charger has an active rectifier,

the power factor can be arbitrarily controlled. Fig. 16 shows
varying the reactive power while the active power is held
constant, resulting in control of the power factor over its entire
range. Each color of Fig. 16 represents a single test case,
where each test case is a unique combination of active power,
reactive power, and the resulting power factor. Power factor
for each test case is controlled by varying the reactive power.
This shows how chargers of this design can be used to provide
reactive power support to the grid.

E. Grid Quality
The grid quality results discussed in this section include

both the THD as a function of output power and the lower
frequency harmonic performance as it relates to UL2231
and IEEE1547 standards. The harmonic content of the grid
current is measured at the point of common coupling between
the charger and the grid connection. Fig. 17 shows that the
THD is relatively constant with respect to power. Fig. 15
show that the charger is compliant with the harmonic content
standards outlined in UL2231 and IEEE1547. This also has
the implication of further proving that this transformerless
topology is feasible for industrial applications.

F. Leakage Performance
Experimentally validating the leakage current is of increased

importance with a charger of this topology as it is not galvan-
ically isolated. Standards dictate that the voltage that drives
the leakage current must be kept below 10VRMS between the
frequencies of 20Hz to 1MHz when measured through the
circuit as seen in Fig. 18. The transfer function of the standards
compliant measuring circuit is

Vout

Vin
=

s(C1R1R2 +R2)

s2(C1C2R1R2R3) + s(C2R2R3) +R1 +R2
. (16)
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Fig. 18. UL standards compliant leakage voltage measuring circuit (left)
and filtered and unfiltered leakage voltage (right).

Fig. 19. Leakage current and leakage voltage of the charger under
various control scenarios. a) Proposed charger with zero voltage control
active. b) Proposed charger with zero voltage control disabled. c) Typical
charger topology without zero voltage control.

The measured leakage voltage is first passed through the
transfer function in (16) and then all frequencies outside of
20Hz to 1Mhz are removed. The RMS of this signal is then
calculated. This charger achieved a value of 4.22VRMS during
this test, under the standards defined limit of 10VRMS , proving
this topology compliant with the relevant leakage standards,
further implying the feasibility of this charger topology for
industrial applications.

Fig. 19a shows the leakage current and voltage for the
proposed charger with zero voltage control active. The leakage
current is 15mARMS , well below the 30mARMS standards
limit. Fig. 19b shows the proposed charger with the zero
voltage control disabled, resulting in a leakage current of
75mARMS . Lastly, Fig. 19c shows a traditional topology
with no zero voltage control which has a leakage current of
300mARMS .
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G. Efficiency
The power conversion efficiency as a function of battery

voltage can be seen in Fig. 20. The peak efficiency of 99.51%
is reached at rated power (22kW) a battery voltage of 200V.
Peak efficiency for a 400V battery is 99.04% and 99.27% for
a 300V battery. Efficiency at one-half the rated power is above
98%. Fig. 21 shows the loss breakdown for both Version 1 and
Version 2 of the charger when operating at rated power with a
400V battery. The total loss is experimentally measured, then
the ratio of the individual loss mechanisms to the total loss is
calculated using (1) - (12). This provides the individual loss
mechanism values of Fig. 21.

uFrom version 1 to version 2 the conduction and inductor
losses increase slightly, but the switching losses increase
significantly which can be attributed to the increased switching
frequency. These values are in line with those calculated using
the methods presented in Section III, however, it is worth
noting that the measured efficiency is slightly higher than the
calculated efficiency. Efficiency is measured using a Tektronix
MSO58 oscilloscope IMDA power analyzer function.

V. CONCLUSION

This paper demonstrates the feasibility of transformer-
less charger architectures in non-academic environments and
presents a formulaic approach to the design process. The
benefits of the transformerless topology is evident in the high
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efficiency of this charger. By conforming to relevant leakage
current and current harmonics standards the industrial applica-
tions of this topology are proven. Potential improvements on
this charger include increasing efficiency and power density.
Neither the switches nor the passive components are operating
near their current limits, so power density can be increased by
simply increasing power output. Placing FETs in parallel can
reduce the FET loss, improve efficiency and further increase
the power output. Lastly, the layout of the physical charger can
be optimized and compacted, resulting in decreased charger
volume and increased power density.
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