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Abstract—Fractional-order dynamics can form physically-
interpretable equivalent-circuit models of the diffusion overpo-
tential in lithium-ion batteries but have complex formulations in
the time-domain. Meanwhile, resistor-capacitor circuits have sim-
ple implementations but little physical meaning. Thus we propose
a discrete-time state-space diffusion model, named ‘receding-
horizon diffusion’ (RHD). It combines physical interpretability
with computational simplicity. Analogous to the Warburg element
in impedance spectroscopy, the RHD constant is explicitly linked
with the lithium ion diffusion coefficient. Fivefold validation of
the RHD model using simulated and experimental from lithium
NiMnCo and NiCoAl cells up to 3 C-rate, temperatures from 0 to
25◦C, and wide ranges of states of health and charge. The model
has less than 1% modelling error. Ohmic, charge-transfer, and
diffusion overpotentials are tracked in real time. The RHD model
could be integrated into battery management systems in electric
vehicles and used in standard state estimation techniques.

Index Terms—Batteries, Equivalent circuits, State-space meth-
ods, Electrochemical processes

I. INTRODUCTION

Lithium-ion battery (LIB) models form the basis of most
battery management systems (BMS) [1]. The BMS depends
on accurate models to perform state estimation [2]. Battery
models can also be used to provide insight into cell degrada-
tion [3], which could allow for advanced degradation-reduction
techniques [4]. There are 2 popular model types: physics-
based models (PBM) and equivalent circuit models (ECM).
PBMs are highly accurate and offer insight into internal
cell processes such as equilibrium phases reflected in the
OCV, but face challenges in real-time use [5]. ECMs are
especially popular in electric vehicle (EV) applications for
their simplicity and speed [6] in capturing transport kinetics
reflected in the overpotentials. More recently, fractional-order
models (FOM) and physically-meaningful ECMs have been
proposed that can quantify electrochemical overpotentials in
the cell [7]. These models offer greater interpretability than
standard ECMs without significantly increasing computation
time.

The ‘NRC model’ is a basic ECM consisting of one series
resistor and N pairs of resistors and capacitors in parallel
(known as RC pairs), where typically N > 2. Estimation
and simulation of the model parameters is performed on
time-domain voltage data using techniques such as recursive
least-squares [8]. Computation of the NRC model is fast
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due to its linear discrete state-space formulation. The NRC
model can predict battery voltage with high accuracy, but
lacks interpretability— several RC pairs are used recreate
phenomena governed by a single fractional-order process like
diffusion. This suffices for a conventional BMS, but track-
ing and predicting battery overpotentials and degradation is
increasingly important for advanced BMS diagnostics [4].

FOMs are a more advanced model used for frequency-
domain data obtained through electrochemical impedance
spectroscopy (EIS). EIS is a time-consuming process mainly
used for laboratory studies [9]. The frequency-varying
impedance is modelled with a FOM such as the Randles
circuit, whose parameters can be used to provide insight into
degradation modes in the cell [10]. FOMs include a constant-
phase element (CPE). The CPE is defined by a fractional-order
transfer function, which is shown to accurately capture the
charge transfer and diffusion overpotentials [11]. In Randles
circuits, a 0.5-order CPE named the Warburg impedance is
added. FOMs face challenges in BMS implementation because
frequency-domain data is difficult to obtain in real-time. Since
FOMs can provide insight into overpotentials and degradation,
time-domain FOMs have been studied for several years [5],
[8], [12], [13]. While the main research focus on FOMs has
been identification of the CPE order [14], [15], even simpler
fixed-order fractional systems rely on complex formulations
such as the short-memory Grünwalde-Letnikov method for
discretizing fractional derivatives [5], [8], [12]. This may
hinder their widespread use despite their high accuracy and
interpretability.

As a likely result of the desire to avoid fractional calculus,
overpotential models of diffusion have been combined with
NRC elements. Modelling accuracy is increased with addi-
tional parameters but without much increase in computational
cost [16]. Networks of RC pairs may be assigned to diffusion
[17], [18] or a ‘diffusion resistance’ and ‘diffusion time
constant’ may be introduced [19], [20]. Besides using many
parameters, both approaches still fall short in capturing diffu-
sion’s fractional-order nature [10]. There remains a need for
physically-meaningful ECMs that can describe the diffusion
overpotential without sacrificing the interpretability of FOMs.

A. Contributions and outline

A diagram of the methodology of this article is shown in
Fig. 1. We propose two novel time-domain definitions of the
diffusion overpotential derived from results first obtained in
[7]. We name them the ‘convolution-defined diffusion’ (CDD)
and ‘receding-horizon diffusion’ (RHD) models. They are
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Fig. 1. Diagram representing the structure and methodology of the article, showing development of the CDD and RHD models, validation using simulated
and experimental data, and key results.

(a) (b)

Fig. 2. Battery equivalent circuits, diagnostics signals, and empirical overpotentials from a Kokam SLPB100216216H NMC cell, showing (a) Fractional-order
model (FOM) with a constant-phase element (CPE) and Warburg impedance, and (b) Proposed receding-horizon diffusion (RHD) model

contrasted in Fig. 2 with the frequency-domain FOM model.
CDD accurately describes the diffusion overpotential using
convolution. RHD approximates CDD using a state-space
formulation. Our proposed models offer a discrete-recursive
state-space analogue to the Warburg impedance in the time
domain using only 1 modelling parameter. The RHD model is
accurate, fast, and physically linked to the diffusion coefficient.
A standard BMS could easily implement the RHD model to
track electrochemical overpotentials in real-time.

Model development is shown in Sections II and III with
derivations of the CDD and RHD models. Verification results
for the CDD and RHD models are then presented in Sections
IV and V using the simulated and experimental methodology
shown in Fig. 3. The article is concluded in Section VI.

II. CONVOLUTION-DEFINED DIFFUSION MODEL

The CDD model extends galvanostatic intermittent titration
principles first described in [7], [21]. Applying Fick’s law
across a finite-boundary electrode and liquid electrolyte, diffu-
sion is quantified with the diffusion constant AD [A−1s−0.5],

AD =
2βvM

SF
√
Dπ

(1)

TABLE I
KEY ELECTROCHEMICAL PARAMETERS.

Symbol Description Value Units
1/β Max stoichiometric added lithium [0, 1] —
vM Molar volume of NMC MNMC

ρNMC
cm3

MNMC Molar mass of NMC 96.46 gmol−1

ρNMC Density of NMC 4.7 gcm−3

S Active surface area 3εAM
Lagg

ve cm2

εAM Volume fraction of active material [0, 1] —
Lagg Agglomerate size — µm
ve Electrode volume — cm3

F Faraday’s constant 96 485 Cmol−1

D Lithium-ion diffusion coefficient — m2s−1

where the parameters are defined in Table I. Each current step
change at time tn ≤ t, n ∈ Z+, incites a diffusion state ψn(t)
[A · V · s0.5] defined as

ψn(t) = ζn
√
t− tn (2)

with the diffusion state amplitude ζn [A · V] given by

ζn = ∆I(tn)∇VOC(tn) (3)
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where we define

∆I(tn) = i(tn)− i(tn −∆t)

∇VOC(tn) =
∂VOC
∂SoC

∣∣∣∣
SoC(tn)

(4)

and where i is the cell current, ∆t is the sampling interval,
VOC is the open circuit voltage (OCV) and SoC is the state
of charge. The DNRC diffusion overpotential is then given by

VDNRC(t) = AD

Nstep∑
n=1

ψn(t) (5)

where Nstep is the total number of step changes.
Those familiar with zero-order hold (ZOH) sampling and

the derivation of the Duhamel integral via the superposition
of impulses will quickly observe that, as the width of the
step changes approaches 0, the DNRC formulation reduces
to convolution. Consider the ZOH-modified cell current as a
sum of rectangle pulses, denoted by the function rect(·),

i(t) =

∞∑
k=0

i(tk) · rect
(
t− tk − ∆t

2

∆t

)
(6)

Corresponding to each sampling index k are now two step
changes in current: the rising and falling edges of the ZOH
pulse, which each incite their own diffusion states ψk and ψ′k.
The diffusion overpotential becomes

VD(t) = AD

∞∑
k=0

(
ψk(t) + ψ′k(t)

)
(7)

Similarly, we have the state amplitude at the rising edge

ζk = i(tk)∇VOC(tk) = ζ(tk) (8)

which is equal and opposite at the falling edge, ζ ′k = −ζk.
Note that ζ is now a function of time. Defining the unit impulse
response

gz(t) =
√
t−
√
t−∆t (9)

we see that substituting (8) into (2) yields the sum of the rising
and falling edge states

ψk(t) + ψ′k(t) = ζ(tk)gz(t− tk) (10)

for t > tk. Substituting (10) into (7) yields convolution,
denoted by ∗

VD(t) = AD

∞∑
k=0

ζ(tk)gz(t− tk) = AD · ζ(t) ∗ gz(t) (11)

Thus the diffusion overpotential is represented as a convo-
lution of the diffusion state amplitude ζ with the unit impulse
response gz . Furthermore, the CDD model is linked to FOMs.
Taking the continuous Laplace transform G(s),

G(s) = L
(

lim
∆t→0

gz(t)

∆t

)
= L

(
1

2
√
t

)
=

√
π

4
s−1/2 (12)

we obtain a fractional-order transfer function. In the time-
domain, this becomes a semi-integral which may be calculated
with fractional calculus [22].

III. RECEDING-HORIZON DIFFUSION MODEL

The full RHD model state equations, including the ohmic
Vs and charge transfer Vct overpotentials, are given by

x(tk+1) = Ax(tk) +Bu(tk)

y(tk) = Cx(tk) +
(
R0 0

)
u(tk)

(13)

x(tk) =

(
x`(tk)
xν(tk)

)
, u(tk) =

(
i(tk)
i(tk−1)

)
(14)

A =

(
A` 0
0 Aν

)
, B =

(
B`
Bν

)
, C =

(
C` Cν

)
(15)

where the output is linked to the terminal voltage Vo by

Vo(tk) = VOC(tk)− y(tk)

y(tk) = Vs(tk) + Vct(tk) + VD(tk)
(16)

When N = 2 RC-pairs are used, the variables A`, B`, C`,
and D` are given by standard NRC equations,

A` =

(
e−

∆t
R1C1 0

0 e−
∆t

R2C2

)
, B` =

(
1− e−

∆t
R1C1 0

1− e−
∆t

R2C2 0

)
C` =

(
R1 R2

)
(17)

Note that x` ∈ RN is the ohmic and charge transfer state
vector, A` ∈ RN×N is a diagonal matrix, B` ∈ RN is a
column vector, and C` ∈ RN is a row vector.

The variables xν , Aν , Bν , and Cν describe the RHD dif-
fusion element and are formulated below. Rather than convert
the DNRC superposition into convolution, we can limit the
number of diffusion states by applying a receding-horizon.
All states beyond the horizon are assumed to saturate at some
constant value. Only states within the horizon are tracked, and
an offset term is used to store the saturated states.

We first obtain a discrete-recursive form of a single diffusion
state as defined in (2). Due to square-root dynamics, this is a
piece-wise function

ψn(tk+1) =


ψn(tk)

√
1 + 1

k−n k > n

ζn
√

∆t k = n

0 k < n

(18)

Assuming a continuously-varying current input, from (3) and
(14) we can define

ψk(tk+1) = bν(tk)u(tk) (19)

where bν(tk) ∈ R2 is a row vector dependent on the time step
that introduces the OCV gradient and differential current into
the RHD model,

bν(tk) = ∇VOC(tk)
√

∆t
(
1 −1

)
(20)

For a horizon with a length of M time steps, the diffusion
overpotential becomes

xν(tk+1) = Aνxν(tk) +Bvu(tk)

VD(tk) = Cνxν(tk)
(21)

xν(tk) =


xoffset(tk)
xM (tk)

...
x0(tk)

 (22)
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Fig. 3. Overview of simulated and experimental setup for data collection and analysis

Aν =



1 aM 0 0 0 · · · 0
0 0 aM 0 0 · · · 0
0 0 0 aM−1 0

0 0 0 0
. . .

...
...

...
...

... a2 0
0 0 0 0 · · · 0 a1

0 0 0 0 · · · 0 0



Bν =


0
...
0

bν(tk)

 , Cν = AD
(
1 · · · 1 1

)
(23)

where xν ∈ RM+2 is a column vector, Aν ∈ R(M+2)×(M+2)

is a square matrix, Bν(k) ∈ R(M+2)×2 is a matrix with M+2
rows and 2 columns, Cν ∈ RM+2 is a row vector, xoffset is a
scalar, and am is a scalar derived from (18),

am =

√
1 +

1

m
(24)

The parameter AD in Cν is the only modelling parameter
that must be identified. The step horizon M is treated as a
tuning parameter that is fixed before implementation of the
RHD model. Step horizon corresponds to a length of time, so
for a 10s horizon and a sampling interval of 0.1 s, M = 100.

Dynamic processes occur in the state vector due to the
off-diagonal of the matrix Aν . At each k, Aν advances the
states to the next time step. One state saturates and another is
initialized. Saturated states are stored in the offset term xoffset
accumulating the effects of OCV change. In contrast to the
CDD model, the RHD model only requires a fixed number
of states that are updated recursively in discrete-time. Thus a
completely linear state-space definition is achieved.

IV. VERIFYING CONVOLUTION-DEFINED DIFFUSION

The first link between CDD and diffusion is demonstrated
with PBM-simulated data. Unlike in real systems, the aggre-
gated diffusion coefficient of the cell is known in a PBM. Thus

the CDD-predicted diffusivity D̂ may be calculated from the
diffusion constant AD and the known PBM parameters,

D̂ =
4

π

( βvM
SFAD

)2

(25)

where the parameters are defined in Table I and 1/β = 0.55,
εAM = 0.306, and Lagg = 1µm. The prediction D̂ is then
compared with the true model diffusivity. Simulations of pulse
perturbation are performed using varied diffusion coefficients
in a coupled agglomerate-scale and electrode-scale continuum
PBM for an NMC cell, described in [23], [24], with SoC
range [0.16, 0.90] and SoH range [0.61, 1]. For simplicity,
the PBM does not capture charge transfer dynamics so the
only CDD parameters are R0 and AD, hence the name ‘CDD-
0RC’. Parameter estimation is performed using the scatter-
search non-linear global optimization algorithm [7], [25].

Results are shown in Fig. 4 with simulated voltage shown in
4a. The mean absolute percent error (MAPE) of the predicted
voltage is bounded by 1% for all pulses. The highest error
results from low diffusivities and high SoC which may cause
OCV dynamics not captured by the diffusion overpotential.
Besides these extremes, the CDD model accurately models the
PBM voltage response. The prediction trendline demonstrates
strong agreement with the true diffusivity. Individual diffusiv-
ity may vary due to SoC-varying initial states such as the initial
concentration of lithium-ions. Still, the CDD model diffusion
constant AD is a good indicator of the internal diffusivity.

The second link to the diffusion overpotential is from
frequency analysis of CDD-simulated data. In electrochemical
impedance spectroscopy, the overpotentials are clearly ob-
served in the frequency domain Nyquist curves [9]. Only diffu-
sion is known to affect the low-frequency ‘tail’. Therefore the
frequency spectrum of the simulated CDD model should yield
distinct behavior in the Nyquist curves. Frequency analysis of
simulated CDD model data is performed by calculating the
complex frequency-varying impedance Z(s), obtained using
simulated pulse impedance spectroscopy, detailed in [26]. To
observe the effects of R0, R1, and AD, one parameter is varied
while the others are held constant. This allows the frequency
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Fig. 4. Comparison between the CDD-0RC model and PBM model, showing (a) PBM-simulated voltage response and predicted CDD-0RC voltage and (b)
Apparent diffusivity predicted by CDD-0RC model compared with the true PBM diffusivity.
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Fig. 5. Nyquist curves from frequency analysis of simulated CDD-1RC time-domain data, showing overpotential variations in (a) Ohmic, (b) Charge transfer,
and (c) Diffusion
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Fig. 6. Analysis of aged NMC cells at various SoC using the CDD-1RC model, showing (a) observed cell voltage and predicted CDD-1RC voltage, (b)
Absolute percent error of the predicted voltage color-coded by SoH, and (c)-(d) CDD-1RC modelling parameters plotted against SoH and SoC
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Fig. 7. Results showing how RHD approximates CDD, with (a) Simulated current waveforms and variation of voltage MAPE between RHD and CDD, and
(b) Voltage and percent error using various RHD horizon lengths (in color) compared with the CDD output (in black)
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Fig. 9. Overpotential analysis for LA92 data using RHD-1RC model with a 20 s horizon, showing (a) Voltage prediction and percent error and (b) Variation
of overpotentials over time
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behavior to be clearly observed. Results are shown in Fig.
5. It can be seen that the parameters affect the Nyquist plot
as expected. Ohmic resistance R0 shifts the x-axis crossing,
R1 affects the size of the mid-frequency semi-circle, and AD
affects the low-frequency tail, again suggesting that AD is
uniquely linked to diffusion.

The third validation uses experimental aging data to demon-
strate how the CDD model can track cell parameters over the
cell’s lifetime. This is important for cell diagnostics. Different
usage profiles may result in different parameter trends, which
can inform optimal cell cycling conditions. Experimental cell
aging data is collected from 3 commercial 2.7 Ah lithium
NMC oxide cells (Panasonic NCR18650PF) held at 10◦C.
Cycling protocol is similar to the procedure described in
[27]. Cells are degraded by low-voltage cycling at 1 C-rate,
which can represent incomplete charging and high depth-of-
discharge. This usage profile could be common in portable
electronics. There are 14 unique state of health (SoH) in
the range [0.78, 1]. At each SoH, unipolar charge pulses are
applied to the cell at SoC in the range [0.04, 0.92]. The CDD-
1RC model parameters are then estimated from the voltage
responses.

Results for the cell lifetime are shown in Fig. 6. Percent er-
ror in Fig. 6b spikes at transitions, but otherwise remains low.
On average, the MAPE of each pulse is below 0.5%. There
are very strong trends in the CDD-1RC parameters, shown
in Figs. 6c-d. Resistances increase as SoH decreases, while
capacitance decreases. The diffusion constant AD, which
varies inversely with diffusivity, is seen to increase as SoH
decreases. This agrees with the observations in [28], where
lithium-ion diffusion may be slowed by degradation processes.

V. VERIFYING RECEDING-HORIZON DIFFUSION

Having validated CDD, we now show that RHD exactly
approximates CDD for a sufficient horizon length. Simulations
of the RHD and CDD model are compared to demonstrate how
the receding horizon approximates convolution. Two voltage
waveforms are simulated for comparison: sawtooth and current
steps. Identical parameters are used in the 2RC-pair models
but the RHD horizon length is varied from 10s to 300s. The
horizon-length-varying error between the RHD approximation
and CDD simulation is then examined for both waveforms.

Results are shown in Fig. 7. Approximation error decreases
to zero as the horizon length approaches the data length of 300
s. The sawtooth wave is approximated more accurately than
current steps. This suggests that the RHD model is slightly
more suited to inputs with constant non-zero gradients, which
is often the case in real systems. Approximation error is
small regardless of the input. Rather than require the entire
current input to be known a posteriori, the RHD model only
requires two samples of the input and a fixed number of
states for a highly accurate discrete-recursive approximation
of convolution.

Experimental drive cycle data is used to compare real-time
RHD model performance to that of conventional NRC models.
Data is obtained from [29], where a fresh 2.9 Ah nickel-cobalt-
aluminum cell (Panasonic 18650PF) is tested in a thermal

TABLE II
DRIVE CYCLE SPECIFICATIONS.

Name [◦C] Description
US06 0 High-acceleration driving
UDDS 10 Urban dynamometer driving schedule
HWFT 25 Highway fuel economy test
LA92 25 California-centric

chamber. The four drive cycles, summarized in Table II, were
applied in two-minute portions, sampled at 10 Hz, to the fully
rested cell, shown in Fig. 8a. Computation time and MAPE
of the RHD model were then assessed.

Results for computation time and error using the drive
cycles are shown in Figs. 8b and 8c. RHD models have
higher computation time due to the larger state vector, but
computation time is traded-off for accuracy. When the RHD
model is used (indicated by non-zero horizon-length), the
MAPE is consistently lower than or bounded by the NRC
(0-horizon) error. This shows that the proposed diffusion
element increases modelling accuracy. The exact improvement
is most easily observed for the 1 RC-pair models, and is data-
dependent. For the lower current cycles, UDDS and LA92,
error decreases with the horizon length. In contrast, the optimal
horizon length for US06 and HWFT cycles is around 40 s.
This could reflect real-life LIB diffusion processes, which have
time-constants of similar orders [20].

The second use of drive cycle data is for tracking over-
potentials. Results of overpotential analysis using the LA92
drivecyle are shown in Fig. 9 for the RHD-1RC with a 40 s
horizon. Maximum error is less than 0.51%. Overpotentials are
easily disaggregated from the predicted voltage, showing that
different processes dominate at different times. This agrees
with results in [30]. Further investigations could use these
results to evaluate the dominant overpotential in different
scenarios, giving insight into limiting transport phenomena.

Now that the CDD and RHD model have been validated,
there is even more choice in battery models for modelling
transport kinetics. Table III summarizes the key features of
NRC, Randles-Warburg, FOM, CDD, and RHD models. It
shows how the charge transfer and diffusion overpotentials
are defined, the mathematical formulation, and whether they
are preferred for the frequency f or time t domains. It can
be seen that our models strike a balance between the NRC,
Randles, and FOM models— they avoid fractional calculus,
have a single interpretable diffusion constant, and can be used
in the time-domain.

VI. CONCLUSION

We have studied diffusion in LIB cells using physically-
interpretable time-domain ECMs. We show that the diffusion
overpotential may be captured using convolution and name this
the CDD model. RHD is then shown to approximate the CDD
with high fidelity using a fixed-size discrete-time recursive
state-space system. RHD is the first representation of diffusion
to use a single modelling parameter without fractional-order
calculus. Verification using simulated and experimental data
shows that the RHD model is fast, accurate, and general-
purpose compared to RC-pair circuits. It could be easily
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TABLE III
COMPARISON BETWEEN EQUIVALENT CIRCUIT MODELS.

Model Charge transfer Diffusion Formulation Domain
NRC RC pairs RC pairs Linear state-space t
Randles RC pairs AW Transfer function f
FOM CPE AW Fractional calculus f
CDD RC pairs AD Convolution t
RHD RC pairs AD Linear state-space t

adapted to existing BMS state estimation techniques such as
Kalman filters to offer further insight into battery degradation.

Further validation and model optimization may be needed.
More extreme temperatures and current rates can be applied.
Subsampling techniques could be used to reduce the size of
the diffusion state vector. Finally, the RHD model can be
integrated with advanced diagnostics in a real EV or grid
system. This could give a greater understanding of internal
cell dynamics with small increases in computation time.

REFERENCES

[1] S. Yang, Z. Zhang, R. Cao, M. Wang, H. Cheng, L. Zhang, Y. Jiang,
Y. Li, B. Chen, H. Ling, Y. Lian, B. Wu, and X. Liu, “Implementation
for a cloud battery management system based on the chain framework,”
Energy and AI, vol. 5, no. 100088, 2021.

[2] A. Carnovale and X. Li, “A modeling and experimental study of capacity
fade for lithium-ion batteries,” Energy and AI, vol. 2, no. 100032, 2020.

[3] K. S. Mayilvahanan, J. Kuang, A. H. McCarthy, L. Wang, K. J. Takeuchi,
A. M. Marschilok, E. S. Takeuchi, and A. C. West, “Understanding
evolution of lithium trivanadate cathodes during cycling via reformulated
physics-based models and experiments,” J. Electrochem. Soc., vol. 168,
no. 050525, 2021.

[4] A. G. Li, , A. C. West, and M. Preindl, “Towards unified machine learn-
ing characterization of lithium-ion battery degradation across multiple
levels: A critical review,” Appl. Energy, vol. 316, no. 119030, 2022.

[5] J. Tian, R. Xiong, , W. Shen, J. Wang, and R. Yang, “Online simultane-
ous identification of parameters and order of a fractional order battery
model,” J. Cleaner Production, vol. 247, no. 119147, 2020.

[6] Y. Li, T. Wik, C. Xie, Y. Huang, B. Xiong, J. Tang, and C. Zou,
“Control-oriented modeling of all-solid-state batteries using physics-
based equivalent circuits,” IEEE Trans. Tranp. Elec., vol. 8, no. 2, 2022.

[7] A. G. Li, K. Mayilvahanan, A. C. West, and M. Preindl, “Discrete-
time modeling of li-ion batteries with electrochemical overpotentials
including diffusion,” J. Power Sources, vol. 500, no. 229991, 2021.

[8] J. Xu, C. C. Mi, B. Cao, and J. Cao, “A new method to estimate the
state of charge of lithium-ion batteries based on the battery impedance
model,” J. Power Sources, vol. 233, pp. 277–284, 2013.

[9] N. Meddings, M. Heinrich, F. Overney, J. Lee, V. Ruiz, E. Napolitano,
S. Seitz, G. Hinds, R. Raccichini, M. Gaberscek, and J. Park, “Appli-
cation of electrochemical impedance spectroscopy to commercial li-ion
cells: A review,” J. Power Sources, vol. 480, no. 228742, 2020.

[10] U. Krewer, F. Roder, E. Harinath, R. D. Braatz, B. Bedurftig, and
R. Findeisen, “Review—dynamic models of li-ion batteries for diagnosis
and operation: A review and perspective,” J. Electrochem. Soc., vol. 165,
no. 16, pp. A3656–A3673, 2018.

[11] K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I.
alternating current characteristics,” J. Chemical Physics, vol. 9, no. 341,
1941.

[12] Z. Liu, Y. Qiu, J. Feng, S. Chen, and C. Yang, “A simplified fractional
order modeling and parameter identification for lithium-ion batteries,”
J. Electrochem. En. Conv. Stor., vol. 19, no. 021001, 2021.

[13] S. M. M. Alavi, C. R. Birkl, and D. A. Howey, “Time-domain fitting of
battery electrochemical impedance models,” J. Power Sources, vol. 288,
pp. 345–352, 2015.

[14] A. Nasser-Eddine, B. Huard, J. D. Gabano, T. Poinot, S. Martemianov,
and A. Thomas, “Fast time domain identification of electrochemical sys-
tems at low frequencies using fractional modeling,” J. Electroanalytical
Chemistry, vol. 862, no. 113967, pp. 345–352, 2020.

[15] J. Tian, R. Xiong, and Q. Yu, “Fractional-order model-based incremental
capacity analysis for degradation state recognition of lithium-ion batter-
ies,” IEEE Trans. Industrial Electronics, vol. 68, no. 2, 2019.

[16] H. Ekstrom, B. Fridhom, and G. Lindbergh, “Comparison of lumped
diffusion models for voltage prediction of a lithiumion battery cell during
dynamic loads,” J. Power Sources, vol. 402, pp. 296–300, 2018.

[17] C. Brivio, V. Musolino, M. Merlo, and C. Ballif, “A physically-based
electrical model for lithium-ion cells,” IEEE Trans. Energy Conversion,
vol. 34, no. 2, 2019.

[18] C. Cheng, H. S. Chung, R. W. Lau, and K. Y. Hong, “Time-domain
modeling of constant phase elements for simulation of lithium battery
behavior,” IEEE Trans. Power Elec., vol. 34, no. 8, 2019.

[19] C. Li, N. Cui, Z. Cui, C. Wang, and C. Zhang, “Novel equivalent circuit
model for high-energy lithium-ion batteries considering the effect of
nonlinear solid-phase diffusion,” J. Power Sources, vol. 523, no. 230993,
2022.

[20] S. Gantenbein, M. Weiss, and E. Ivers-Tiffé, “Impedance based time-
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