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Abstract—Lithium-ion battery strings are important modules
in battery packs. Due to cell variation, strings may have im-
balanced state of charge levels, reducing pack capacity and
exacerbating degradation. While much research has been devoted
to individual cells, string diagnostics using pulse-injection-aided
machine learning can reduce sensing requirements and simplify
computations. Experimental voltage response data from pulse
perturbation of battery cells is used to generate virtual cell strings
and ‘design’ the state of charge imbalance within the string. A
feedforward neural network is trained on thousands of unique
virtual string voltages and can distinguish between the balanced
and imbalanced strings with up to 95% accuracy. Verification
is performed using different string configurations and state of
charge levels. The proposed technique has high promise and
could be used to localize or regress the degree of imbalance.

Index Terms—Lithium batteries, Neural networks, String es-
timation, State estimation

I. INTRODUCTION

Lithium-ion battery (LIB) packs are typically composed
of hundred of cells [1]. For proper functioning, the battery
management system (BMS) must monitor each individual cell.
Typically the voltage, current, and temperature are measured to
yield information on the battery states, such as state of charge
(SoC), state of health, and state of power. Battery models, such
as the DNRC model in [2], often provide the basis of state
estimation. Cell states inform the BMS how to operate the
cells in the pack, and thus directly affect the performance of
the battery. In an electric vehicle, this can affect the maximum
driving range, the remaining driving range, and the maximum
acceleration [3].

Managing cell imbalance is a key function of the BMS [4]–
[6]. Even if each cell within a pack is cycled identically from
the same initial states, the SoC of each cell will deviate due to
internal electrochemical variation and external conditions such
as unequal temperatures. If not managed properly, this imbal-
ance can accelerate degradation and pack life. Decentralized
cell-level BMS have been proposed to address this issue [7],
[8], which has led to the concept of ‘smart cells’ [9]. Though
smart cells have high promise, sensing and managing the

voltage, current, and temperature of each cell requires costly
amounts of power electronics, especially in large battery packs.
Module sensing may offer a solution [10]. Modules refer to
groups of cells connected in series or parallel. If the states
of each cell in a module can be obtained from the modular
voltage or current, then the number of sensors can be greatly
reduced.

Of particular interest is the cell string [11], represented in
Figure 1. In a string, each cell is charged and discharged at the
same current and at the same time (neglecting high frequency
behavior), but the cell voltages and SoC can have significant
variation. This is an issue because the string’s performance is
limited by the weakest cell. If any one cell is empty, so is the
string, even if the other cells have remaining charge. Since the
string voltage response is the sum of all the cells’ responses,
the aim of modular sensing is to disaggregate the superposition
– to obtain information about the individual cells from only
the superimposed string voltage.

String sensing is non-trivial, and poses a difficult problem
using conventional control theory techniques. Equivalent cir-
cuits are useful for single cells but multicell systems pose
identifiability challenges [12]. In [13], switching phenomena in
the cell balancing circuits are used to achieve observability. As
switching occurs, the terminal voltage can yield information on
individual states. In [14], nonlinearities in the OCV-SoC curve
demonstrate observability in imbalanced cells. Kalman filters,
often used for individual cell SoC estimation, can be applied to
cell strings [15], but only for the extrema of the SoC and after
balancing has been performed. In these studies, observability
relies on certain conditions that may not be met at all times.
Deviation matrices are shown to qualitatively identify high-
impedance cells, but faces challenges for imbalanced strings
[16]. A general-purpose string SoC estimation method using
SoC differences demonstrated promising results but with high
computational complexity [17]. Choosing a ‘representative
cell’ is proposed to reduce computational burden but requires
a carefully-designed selection process [18].

We propose to use pulse-injection-aided machine learning
(PIAML) for SoC imbalance classification in a cell string. We



Fig. 1. Diagram of a 3-cell LIB string showing the DNRC equivalent circuit model [2]
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Fig. 2. Experimental and simulated data, showing (a) Incremental capacity curves derived from pseudo-OCV discharge data collected from LIB cells at
various levels of degradation, and (b) Samples of string simulation with N = 48 cells, colored by average nominal SoC

Fig. 3. Diagram of sampling process for simulating balanced and imbalanced cell strings



show that a neural networks (NN) can use pulse perturbation
of a string of LIB cells to accurately classify a cell string
as balanced or imbalanced, thus bypassing traditional control
techniques. This could provide the basis for direct SoC esti-
mation in a string using NN.

To date, only individual cells have been assessed using
PIAML. Cell strings are important modules in battery packs
that are well-suited for pulse perturbation. Understanding
the SoC distribution of a string is important for the BMS.
While locating and addressing the source of the imbalance
is the ultimate task, identifying an imbalanced string is also
important. A variety of scenarios are examined for validation,
such as the degree of imbalance and the number of cells out
of balance. There is potential for imbalance localization and
state estimation.

The paper continues in Section II where key theoretical
concepts are explained. Data collection and processing are
described in Section III. Results are presented in Section IV.
The paper is concluded and future work described in Section
V.

II. THEORETICAL CONCEPTS

PIAML has already shown high accuracy in estimating cell
states [19] and it is a promising technique for characterizing
degradation [20]. Offline, PIAML is developed by training a
machine learning algorithm such as a feedforward NN. NN
estimation consists of matrix multiplication between several
layers of nodes and connections linked by network weights.
The NN learns the optimal weights to match the target data
given the observed voltage response of the cell. Targets can be
cell states, as demonstrated in [19], but any cell characteristic
could be used. Training is performed with repeated optimiza-
tion cycles known as epochs. In each epoch the network
weights and connections are readjusted based on the training
data batch and optimizer function. Once the NN is trained, it
estimates the targets given an unseen voltage response.

We hypothesize that imbalanced strings have a unique
signature in the pulse voltage response that a NN can identify
and learn from. We would expect this signature to be small for
slight imbalance, and large for severe imbalance. We therefore
train the PIAML algorithm on a string voltage response, with
the classification boolean as the target: 0 for balanced, 1 for
imbalanced.To label a string as balanced or imbalanced, the
SoC of each cell must be known. Thus the design of the
LIB strings must be controlled. While it is possible to collect
experimental data of string pulse perturbation, it is costly
and time-consuming to collect a sufficient amount of samples
representative of real-world conditions. Thus we propose the
simulation of cell strings using the experimental data from
individual cells.

III. DATA COLLECTION AND SIMULATION

Since cell strings are typically subject to identical cycling
conditions, pulse data was collected similarly. Three nickel-
magnesium-cobalt Panasonic NCR18650PF cells were cycled
at 8◦C between 0 to 0.5 state of charge (SoC) at 1 C-rate,

TABLE I
NUMBERS OF IMBALANCED CELLS FOR DIFFERENT STRING SIZES

String size N Values of nimb

3 1
6 1, 2, 3
12 1, 2, 4, 6
24 1, 4, 8, 12
48 1, 4, 8, 16, 24
96 1, 8, 16, 32, 48

2.7 A. Pulses last 2 min with 1 C-rate amplitude and are
composed of a charge and discharge portion. Capacity checks
are performed every 100 cycles using a 1/20 C-rate discharge
from full, the inverse derivative of which is shown in Fig.
2a as the incremental capacity (IC) curve. After the capacity
check, pulses are applied from rest at various SoC, with 1 hour
rest between each SoC level. In total, 363 unique pulses are
obtained.

Strings may be simulated with high fidelity using the pulse
data collected from individual cells. In a string, it is known that
each cell receives the same pulse current. By the superposition
principle, the string voltage is equal to the sum of the voltages
from all the cells. Since the same pulse current was applied to
all the individual cells during cycling, we can sum the voltage
responses from individual cells to obtain a ‘virtual string’.

There multiple variables to consider when designing a
virtual string: string size N , the number of imbalanced cells
nimb, and the maximum imbalance limit ∆zmax. These 3
factors control the string simulation process, represented in
Fig. 3. A string is considered imbalanced if the SoC level of
any cell is more than 1% away from the SoC of another cell
in the string. We do not explicitly control clusters, a scenario
in which there are multiple groups of balanced cells but the
total string is imbalanced.

The simulation method mirrors random variation in cells
by sampling the entire experimental dataset to generate cell
strings. First, a SoC value corresponding to a pulse is randomly
selected (with replacement) from the 363 real values. This
allows us to define 3 sampling regions named the reference,
upper, and lower bins. The reference bin is centered around
the reference SoC z0 and has a width of 1%, with the bounds
given by z0 ± 0.05. The upper and lower bins extend beyond
the limits of the reference bin, and stop at the upper and lower
bounds zub and zlb. The maximum possible imbalance is then
defined as

∆zmax = zub − zlb (1)

To generate a balanced string, N samples are drawn from the
reference bin. To generate an imbalanced string, nimb samples
are drawn from the lower and bin and (N − nimb) from the
upper bin. The voltage responses corresponding to each sample
are then summed to obtain the string voltage.

We generate imbalanced strings for each unique combina-
tion of string size and maximum imbalance, where

N = {3, 6, 12, 24, 48, 96}
∆zmax = {0.02, 0.04, 0.06, 0.08, 0.10}

(2)
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Fig. 4. Accuracy across 10 trials shown in various dimensions showing (a) Accuracy against the percent of imbalanced cells nimb
N

, (b) Accuracy against
maximum imbalance for all string sizes, color-coded by the percent of imbalanced cells, and (c)-(d) Accuracy against string size and maximum imbalance
with standard deviation across different values of nimb
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Fig. 5. NN results for a single trial of N = 48 strings, showing training loss (left) and confusion matrix (right) for (a)-(b) 2% maximum imbalance and 1
imbalanced cell, and (c)-(d) 10% maximum imbalance and 24 imbalanced cells.
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Fig. 6. Voltage-varying plots showing how the number of correct classifications varies with the average cell voltage across multiple trials for 48 cell string,
with (a) Histogram for nimb = 1, ∆zmax = 0.02 and (b) Histogram for nimb = 24, ∆zmax = 0.10, and (c) Plot of voltage-varying accuracy for the cases
in (a) and (b)

TABLE II
HYPERPARAMETERS FOR NN TRAINING

Hyperparameter Value
Hidden Layers 4
Nodes 32
Activation Function Swish
Network Weight Constraint 5
Dropout Rate 0.1
Optimizer Adam
Learning Rate 0.001
Batch Size 64
Training Epochs 20000
Patience 10000
Trials 10

We also consider varying values of nimb, as shown in Table I.
For comparison between different-size strings we can define
the percent of imbalanced cells as

percent imbalanced = 100× nimb

N
(3)

given the string size. Note that typically nimb

N does not exceed
0.5 for an imbalanced string. The chosen ranges of parameters
represent typical real-world values [1].

For each combination of parameters, approximately 1000
balanced strings and 1000 imbalanced strings are generated.
This yields 2000 simulated strings for 110 unique scenarios
of imbalance. The pulse voltages for N = 48, nimb = 16,
and ∆zmax = 0.1 are shown in Fig. 2b color-coded by the
average nominal SoC of all the cells during the pulse. It
can be seen that there is no obvious visual signature of an
imbalanced string. The feedforward NN uses 64% of the data
for training, 16% for training validation, and 20% for testing.
The testing set is withheld from the NN during training so
it makes predictions on unseen data. NN hyperparameters for
network size, node activation, and optimization are shown in
Table II. Due to the stochastic nature of NN optimization, the
overall training and testing process is repeated for 10 trials.

IV. RESULTS AND DISCUSSION

Results for all 110 scenarios are shown in Fig. 4. The
maximum recorded accuracy for a single trial was 95% for
N = 96, nimb = 48, and ∆zmax = 0.10. The lowest was 49%
for N = 48, nimb = 1, and ∆zmax = 0.04. This suggests that
PIAML for SoC imbalance classification is highly effective for
large strings with many highly imbalanced cells, but ineffective
for large strings with a very slight imbalance. This agrees with
our hypothesis: the more severe the imbalance, the greater the
signature in the pulse voltage and thus the more accurate the
NN.

There are four similar but distinct perspectives with which to
comprehend the variation in accuracy. First, Fig. 4a shows the
accuracy against the percent of imbalanced cells nimb

N for var-
ious levels of severity ∆zmax. As the number of imbalanced
cells in the string increases, the NN becomes more accurate.
This may be due to an exacerbated signature in the pulse
data. Next, Fig. 4b shows the accuracy against the severity
of imbalance. It is clear that accuracy increases linearly with
the maximum imbalance. In Fig. 4c, the average of the mean
trial accuracies for all values of nimb is plotted against the
string size. Accuracy increases approximately logarithmically
with the size of the string for large values of ∆zmax but
is mostly constant for smaller values. This indicates that a
large string with a higher maximum imbalance yields a greater
pulse signature than the same string with a smaller maximum
imbalance, a conclusion also supported by Fig. 4d.

An intriguing characteristic of the final results is the drop
in accuracy between ∆zmax = 0.02 and ∆zmax = 0.04, as
observed in Figs. 4a-b. This may be attributed to the simulation
process. Imbalanced strings were created by sampling from
the lower and upper SoC bins. Since the bins are 1% apart,
this guarantees that the string will be imbalanced. When the
maximum imbalance is 2%, the bin widths are 0.5%. This
means that all the samples within each bin will be within 0.5%
SoC of each other and the simulated string has two clusters
of SoC levels. Once the ∆zmax reaches 4% and above, the



maximum SoC difference between samples within each bin
exceeds 1%. Therefore it is possible for multiple SoC clusters
to exist. The drop in accuracy corresponds to the onset of
increased SoC clustering in the string. For ∆zmax > 0.04, all
strings are subject to clustering and thus the trends are affected
by other variables.

Training and validation curves and post-testing confusion
matrix for 2 unique scenarios are shown in Fig. 5. In Figs.
5a-b, N = 48, nimb = 1, and ∆zmax = 0.02. The vali-
dation accuracy ceases to decrease from approximately 6000
epochs, indicating a lack of improvement and the potential
for overfitting the training data. Indeed, this scenario resulted
in low accuracy, as shown in the confusion matrix. In Figs.
5c-d, N = 48, nimb = 24, and ∆zmax = 0.10. This scenario
resulted in much higher accuracy and higher-quality validation
curves that could improve with further training.

Finally, we examine the variation of classification accuracy
with the average cell voltage in Fig. 6. This adds yet another
dimension to the results so multiple trials from 2 specific sce-
narios were considered. Similar trends are expected for other
scenarios. As expected, the voltages are clustered towards
the middle, reflecting the simulation process. Since accuracy
is measured across the entire dataset, the number of correct
classifications as a portion of the total number of samples is
plotted against the voltage range. Accuracy is lowest at the
voltage extremes but this may be due to the small numbers
of available samples at low and high voltages. There may be
a correlations between classification accuracy and the OCV
characteristic shown in Fig. 2a, where peaks in the IC curve
represent phase changes in the LIB cell. Further research is
needed to verify these links.

V. CONCLUSION

PIAML was shown to be a promising technique for classify-
ing imbalance in LIB strings. It uses a NN to classify a string
using the string’s voltage response to a current pulse pertur-
bation. We assess the performance of PIAML by simulating
cell strings using experimental data collected from individual
cells. String design is governed by 3 parameters: string size,
the maximum imbalance, and the number of imbalanced cells.
In total, we examine 110 unique combinations of parameters.
PIAML performs the best when examining a 96-cell string
with a high proportion of cells that are up to 10% imbalanced.
This suggests that imbalanced strings leave a ‘signature’ in the
voltage response that becomes easier to observe the greater the
imbalance. There numerous opportunities for further improve-
ment and extension of our work.

New string sizes and imbalance designs can be examined to
validate the results for multiple configurations. Additionally,
the effect of voltage levels on the classification accuracy can
be quantitatively described for multiple scenarios. Wider real-
world conditions could be examined, such as variations in the
external and internal temperature. The NN could also regress
the SoC, directly estimating the SoC in the string rather than
performing classification. Direct string SoC estimation using
PIAML could rival the existing state-of-the-art methods.
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