
Fast Time-domain Impedance Spectroscopy of
Lithium-ion Batteries using Pulse Perturbation

Alan G. Li∗, Youssef A. Fahmy∗, Melissa M. Wu†, and Matthias Preindl∗
∗ Department of Electrical Engineering, Columbia University, New York, NY, USA

† Department of Statistics, Columbia University, New York, NY, USA
Email: matthias.preindl@columbia.edu

Abstract—Electrochemical impedance spectroscopy (EIS) is
a useful diagnostics technique for lithium-ion batteries but
measurements can last several hours. Fast pulse impedance
spectroscopy (PIS) is thus proposed using just 2 minutes of
pulse perturbation data and classic signal processing techniques.
The method is verified using experimental data collected from 6
lithium-ion cells aged under different temperatures and charging
levels. Results show that PIS can extract high-quality Nyquist
plots for overpotential analysis. Comparison is made between the
frequency- and time-domains using the Randles and convolution-
defined diffusion equivalent circuit models. PIS is a practical
time-domain impedance spectroscopy method that experimen-
tally links EIS and convolution-defined diffusion.

Index Terms—Lithium batteries, Frequency analysis,
impedance spectroscopy, pulse perturbation

I. INTRODUCTION

Lithium-ion batteries (LIBs) are important energy storage
technologies for decarbonizing transport and facilitating the
integration of renewable energy into the grid [1], [2]. Better
management of battery degradation can reduce costs and
increase useful life. Degradation of LIB cells results from
complex interactions between the electrodes, electrolyte, and
lithium ions that reduce maximum capacity and power output.
Understanding how these mechanisms of degradation change
in real time is an ongoing challenge. Health estimation and
impedance characterization is thus an important task for bat-
tery management systems [3], [4]

Electrochemical impedance spectroscopy (EIS) is a popular
diagnostics method [5]–[8] performed in the frequency-domain
by stimulating a battery cell at frequencies ranging from
mHz to kHz. The frequency-varying impedance is then used
to fit a frequency-domain equivalent circuit model (ECM),
shown in Fig. 1, known as the Randles circuit. The circuit is
comprised of a resistor, one resistor-capacitor (RC) pair, and
the Warburg impedance AW , which captures the effects of
lithium-ion diffusion. Since diffusion dynamics are influenced
by degradation, EIS is a popular diagnostics tool [9], [10].
Its diagnostics time can last several hours for a single cell,
however, making EIS infeasible for real-time use.

In contrast, overpotential ECMs such as the convolution-
defined diffusion (CDD) model shown in Fig. 1b can be used
in real time. This model introduces a CDD parameter AD that
captures diffusion like the Warburg impedance. Unlike AW ,
AD can be used in the time-domain without any fractional
calculus [11]. This greatly simplifies analysis and reduces

computational complexity. It is theoretically understood that
AD and AW are linked by their ability to capture the diffusion
overpotential. This is qualitatively shown in [11] but an explicit
link between has not been experimentally demonstrated.

Pulse injection is a widely-used method described as early
as [12] for obtaining kinetic parameters of an electrode system,
but [13] is often credited today for standardizing the hybrid-
pulse power characterization test for identifying ECM parame-
ters. Pulses are powerful characterization methods because the
LIB cell response to a pulse is governed by its electrochemical
parameters; indeed, the relaxation response is composed of a
rich interplay of ohmic, charge-transfer, and diffusion over-
potentials in the solid and liquid phases [14]. Though pulses
are traditionally viewed as disruptive diagnostics signals with
long rest times, more advanced processing techniques could
be used to increase the characterization capabilities of pulses
and reduce the need for long diagnostics time [4]. This could
make pulses easier to implement in real systems.

We examine a fast implementation of time-domain
impedance spectroscopy from pulse perturbation of LIB cells,
which we name pulse impedance spectroscopy (PIS). PIS
is assessed at hundreds of unique states by inspecting the
observed impedance Nyquist plots and comparing the fitted
Randles parameters with the CDD parameters. It is shown
that the frequency-varying impedance can be extracted using
just a few minutes of pulse perturbation data. The results also
demonstrate, for the first time, an experimental link between
the CDD parameter AD and the Warburg impedance AW .

We continue in Section II to outline the theoretical concepts
underpinning PIS. In Section III we describe our methodology
for evaluating PIS. Results are presented and discussed in
Section IV. We conclude and offer an outlook in Section V.

II. PULSE IMPEDANCE SPECTROSCOPY

A. Theoretical concepts

Pulses are known to excite a wide range of frequencies.
This parallels traditional EIS, where the frequency-varying
impedance is measured using sinusoidal inputs that are directly
injected into the LIB cell. It is argued in [15], [16] that pulses
fail to excite high-frequency components sufficiently and
‘pulse-multisine’ signals are proposed. Convolving a mutisine
spectrum onto the pulse, however, may be infeasible outside
of laboratory conditions. Thus standard pulses have been used
for time-domain EIS (TD-EIS).
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Fig. 1. Equivalent circuit models, showing (a) Randles circuit for modelling frequency-domain data and (b) convolution-defined diffusion model for time-
domain overpotentials

TD-EIS is founded on digital signal processing and Fourier
theory. It uses time-domain data, such as a pulse perturbation,
to recover the complex frequency-varying impedance Z(s),
where s = j2πf and f is the frequency. In TD-EIS, several
processing steps are required to transform time-domain data to
the frequency-domain [17], [18]. In [17], TD-EIS is explored
with rectangle, Gaussian, and sinc pulses. Though full Nyquist
curves are recovered, 20 min are required for a rectangle pulse.
Drive cycle data is used in [18] using novel parameter esti-
mation techniques. While forgoing a diagnostics signal may
allow for ‘passive’ EIS, [18] shows that mHz characteristics
are not reliably observed during drive cycles.

Fast PIS is a type of TD-EIS that aims to cover the
full frequency spectrum without sacrificing speed or ease of
implementation. It uses a short rectangle pulse to facilitate
practical use and capture low frequencies without requiring
long diagnostics times.

B. Procedure

PIS procedure follows similar steps to those in [17], [18]
but fast PIS uses a rectangle pulse lasting only 2 minutes. Prior
to obtaining the frequency spectrum, the time domain data is
processed. First, the current and voltage harmonic components
are obtained by removing the average value. A Hamming
window is applied to the data to reduce spectral leakage.
Finally, a 1st-order low-pass Butterworth filter of width 1 Hz
is used to avoid aliasing and attenuate high frequencies.

After time-domain processing, the Fast Fourier transform is
calculated for each pulse current and voltage. Since a rectangle
pulse has a sinc spectrum, the components vector is sparsified
by extracting only the maxima of the magnitude response. The
impedance is then calculated using the ratio of the complex
amplitudes of the voltage and current spectra.

Z(s) =
V (s)

I(s)
(1)

Finally, a Savitzky-Golay smoothing filter [19] is applied to
the real and imaginary parts of the impedance to remove
fluctuations in the frequency spectrum.

Like traditional EIS, PIS uses the Nyquist plot to visualize
the results. Nyquist plots are a highly distinct characterization
curve where the imaginary impedance component is plotted
against the real. Nyquist curves are popular for their easily-
observed features, such as the high-frequency (kHz) real-

axis crossing, the mid-frequency semicircle width, and the
low-frequency (mHz) tail. In LIB cells, the high-, mid-, and
low-range features are linked to dynamics from the solution,
charge-transfer, and diffusion overpotentials [6].

The frequency-varying impedance is fitted with the
Warburg-1RC Randles model,

Ẑ(s) = R0 +
R1 + ZW

1 + sR1C1 + sZWC1
(2)

where R0 is the ohmic resistance and the Warburg impedance
ZW is defined as

ZW (s) =
AW√
s

(3)

where AW is the Warburg constant, inverse-square propor-
tional to the aggregated semi-infinite diffusion coefficient D
of lithium-ions in the cell [20]–[22]

1

AW
=
F 2c̄i
√
D

RT
(4)

where F is Faraday’s constant, c̄i is average concentration of
lithium, R is the gas constant, and T is the temperature. Pa-
rameter identification is performed using scatter-search global
optimization,

minimize ‖r‖22
r(s) = Z(s)− Ẑ(s, θ)

θ = (R0 R1 C1 AW )T
(5)

where ‖r‖22 is the sum of the squared residuals.

III. METHODOLOGY

A. Data Collection

We assess fast PIS using cell data collected at a wide
range of states. Six nickel-magnesium-cobalt Panasonic
NCR18650PF cells were cycled using two stress factors ap-
plied to three cells each. In stress factor 1 (S1), cells were
degraded at low state of charge (SoC) (0 to 0.5) and low
temperature (8◦C), while in stress factor 2 (S2) cells were
degraded at high SoC (0.5 to 1) and high temperature (40◦C).
All cells were cycled 2.7 A, corresponding to 1 C-rate. These
two types of stress factors have different effects on how the
cell state of health (SoH) changes over time [23], [24].

Pulses were 2 min long, with an amplitude of 2.7 A and
split equally between charge-rest and discharge-rest portions.



0 25 50 75 100 125
Time [s]

2.5

3.0

3.5

4.0

4.5
Vo

lta
ge

 re
sp

on
se

 [V
]

0.2

0.4

0.6

0.8

N
om

in
al

 S
oC

(a)

0 25 50 75 100 125
Time [s]

3.2

3.4

3.6

3.8

4.0

4.2

Vo
lta

ge
 re

sp
on

se
 [V

]

0.2

0.4

0.6

0.8

N
om

in
al

 S
oC

(b)

0 25 50 75 100 125
Time [s]

0.4

0.2

0.0

0.2

Vo
lta

ge
 re

sp
on

se
 [V

]

0.80

0.85

0.90

0.95

1.00

So
H

(c)

0 25 50 75 100 125
Time [s]

0.10

0.05

0.00

0.05

Vo
lta

ge
 re

sp
on

se
 [V

]

0.92

0.94

0.96

0.98

1.00

So
H

(d)

Fig. 2. Pulse data of cells degraded by S1 (left column) and S2 (right column) showing observed voltage color-coded by SoC (top row) and Hamming-windowed
zero-mean voltage color-coded by SoH (bottom row).

We examine 363 unique combinations of SoC and SoH for
stress factor 1, and 367 for stress factor 2, giving a total
of 730 pulses for verification. Capacity checks are performed
every 100 cycles using a 1/20 C-rate discharge from full. After
the capacity check, pulses are applied from rest at various
SoC similar to the galvanostatic intermittent titration technique
(GITT) protocol [12]. The pulse voltages are shown in Figs.
2a and 2b, with the windowed voltage signals shown in Figs.
2c and 2d.

B. Verification with time-domain fitting

Validation of PIS is performed by analyzing the same
pulse datasets in the time-domain with the CDD model. Since
the Randles and CDD models theoretically model the same
overpotentials, similar parameter trends are expected. Both
models use an ohmic resistance, an RC-pair, and a diffusion
component. While the CDD model operates in the time-
domain and models the time-varying voltage, the Randles
circuit operates in the frequency domain and models the
frequency-varying impedance. Our aim is to show that the
parameter trends in the CDD and Randles circuits are similar.

Parameters for the CDD model are obtained by fitting the
overpotentials to pulse data in the time-domain, as detailed in

[11]. The predicted output voltage V̂ is given by the sum of
the time-varying overpotentials,

V̂ (t) = VOC(t)− Vs(t)− Vct(t)− VD(t) (6)

where VOC is the open-circuit voltage (OCV) and Vs, Vct,
and VD are the solution, charge-transfer, and diffusion over-
potentials. The terms VOC(t), Vs(t), and Vct(t) are defined
by the standard nth-order resistor-capacitor (NRC) equations
as listed in [25]. The diffusion overpotential is derived in [11]
from the convolution of the diffusion state amplitude ζ with
the unit impulse response gz(t),

VD(t) = AD · ζ(t) ∗ gz(t) (7)

where AD is the diffusion constant, also inverse-square pro-
portional to the diffusion coefficient,

1

AD
=
SF
√
Dπ

2βvM
(8)

where 1/β is the maximum stoichiometric added lithium, S is
the active surface area, and vM is the molar volume of active
material. Note the similarities with Eq. (4). Amplitude ζ is
given by

ζ(t) =
(
i(t)− i(t−∆t)

)
∇VOC(t) (9)
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Fig. 3. Real (left), imaginary (middle); and Nyquist (right) impedance plots for S1, showing (a) Observed frequency-varying data and (b) Fitted impedance
from the Warburg-1RC model with expanded frequency range.
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Fig. 4. Real (left), imaginary (middle); and Nyquist (right) impedance plots for S2, showing (a) Observed frequency-varying data and (b) Fitted impedance
from the Warburg-1RC model with expanded frequency range.
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Fig. 5. Evolution of fitted parameters against capacity fade for S1 (left column) and S2 (right column) obtained using the CDD-1RC model on time-domain
data (a)-(b) and the Warburg-1RC model on post-processing frequency data (c)-(d).

while the unit impulse response is given by

gz(t) =
√
t−
√
t−∆t (10)

Parameter identification is performed as above in Eq. (5), but
the residuals and parameter vector are redefined as

r(k) = V (tk)− V̂ (tk, θ)

θ = (R0 R1 C1 AD)T
(11)

and where V is the observed voltage response.

IV. RESULTS AND DISCUSSION

Observed and fitted Nyquist curves for S1 and S2 are shown
in Figs. 3 and 4. Observed Nyquist curves for S1 are quite high
quality in the low- to mid-range frequencies, as seen in the
coherent semicircle. The low-frequency tail is clearly defined
for S1, indicating that the 2-minute pulse sufficiently captures
diffusion dynamics. As the SoH decreases, the semicircle
width increases, as expected. In S2, the Nyquist curves are
poorly defined. This may be attributed to the low magnitude
of imaginary impedance, making it more sensitive to noise.
Distortion therefore occurs because of the dominance of the
real impedance.

At high frequencies there is more noise in the observed
data. This is due to the relatively low sampling frequency
of 10 Hz. By the Nyquist sampling theorem, this limits the
maximum observable frequency component to 5 Hz. Despite
this limit, the fitted curves can accurately reconstruct the data.

This shows that fast PIS is a viable technique for analyzing
the frequency-varying battery impedance.

Fitted curves are displayed with an expanded frequency
range. Since the low- and mid-range frequencies are well-
captured in the observed data, the fitted curves match the low-
and mid-range frequencies well. At high-frequencies there is
more uncertainty. Furthermore, the x-intercept decreases with
SoH. As discussed above, this is because the fit extrapo-
lates beyond the physically observable frequencies, creating
a discrepancy with the real behavior. With a higher Nyquist
sampling frequency, this issue can be avoided.

Parameter evolution of the CDD and Randles circuits is
shown in Fig. 5. There are clear trends in the parameters of
both models, and the two stress factors are highly distinguish-
able from each other. Resistances increase with capacity loss
while the capacitance and the diffusion coefficient decrease
exponentially. Parameters in S1 have higher magnitude and
greater variation than S2 parameters, suggesting that S1 more
severely degrades the LIB cells. The low impedance of S2,
in particular, may explain the poorer quality of the Nyquist
curves. Since the impedance is lower, it is more susceptible
to noise in the frequency spectrum.

Both models exhibit similar trends in R1, C1, and D.
This verifies the PIS results. Though the CDD model and
Randles circuits have different formulations and aim to fit
different types of data, the parameters are quantitatively and
qualitatively linked. Thus we see that fast PIS offers an



alternative to ECM modelling while linking the CDD with
the Randles circuit.

There are discrepancies in the parameter trends caused
by issues in the data collection and processing. For S1, the
Randles R0 does not increase with capacity loss. As noted
above, this may be due to the insufficient sampling frequency
of the pulse data, which would inadequately capture the
solution overpotential. The diffusion parameters AD and AW

are linked by very similar trends. The S1 Warburg impedance
appears to have a low-SoC branch deviating from the trend.
This could be explained by OCV variation in the pulse that is
not explicitly considered in the Randles circuit. While OCV
variation is negligible at most states of charge, at low SoC
there is typically a large gradient in the OCV-SoC curve.
This would then introduce a low-frequency dynamic into
the Nyquist curve, explaining the low-SoC branch in the S1
diffusion trend.

V. CONCLUSION

We demonstrate the ability of PIS to obtain Nyquist curves
using just 2 minutes of pulse perturbation data. PIS was
analyzed using a wide range of LIB at multiple states and
aging conditions. Though the quality of the Nyquist curves
varies with the LIB stress factors, we show fast PIS is a
useful method for verifying electrochemical overpotentials in
experimental data. It extends time-domain EIS results from
previous studies and provides an experimental link between
the time-domain CDD overpotential ECM and the frequency-
domain Randles circuit. Impedance spectroscopy and pulse
perturbation are complementary tools for diagnosis and char-
acterization of LIB cells.

One of the challenges of PIS is OCV variation in the pulse at
low SoC levels. This would introduce low-frequency dynamics
that could obfuscate results for the diffusion overpotential. A
new frequency-domain OCV element could therefore be devel-
oped. Additionally, further work is needed to address the poor-
quality Nyquist curves. Decreasing the time-domain sampling
interval could allow high-frequency dynamics to be accurately
captured. More advanced signal processing techniques can be
used to improve the analysis. Finally, PIS can be compared
with traditional impedance spectroscopy through further data
collection.
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