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Abstract—Grid-connected residential solar-photovoltaic (PV)
and battery systems are increasingly popular types of microgrids.
Determining the optimal energy management system (EMS)
strategy for such microgrids depends on many factors, such as
power demand, solar irradiation, and system costing. The energy
flow for a residential PV-battery microgrid is thus studied in
detail. Three algorithms are used, including load-levelling, peak-
shifting, and an original model predictive control (MPC) EMS.
PV cells, battery overpotentials and degradation are simulated
with physically-meaningful models. Real data from Long Island,
New York, are used to simulate the load power demand, solar
irradiation, utility costs, degradation costs, and PV credits. Both
load and PV forecasting error are considered. Results for the
base cases demonstrate the advantage of MPC EMS. Simulation
parameters are then varied to show that the simulated cost
savings depend on the costing assumptions and forecasting error.

Index Terms—Microgrids, Energy management, Photovoltaics,
Battery storage, Battery degradation

I. INTRODUCTION

Renewable energy integration is key to achieving green-
house gas reduction goals [1]. Solar photovoltaics (PV) and
lithium-ion batteries (LIB) are dominant technologies with
falling costs and more installations [2], [3]. Renewable sources
like PV, however, suffer from decentralized generation and
intermittency. Microgrids, part of the smart grid framework,
may offer a solution [4], [5]. Grid-connected PV-battery mi-
crogrids, represented in Fig. 1, are common arrangements [6].
Optimal operation of microgrids benefits users by increasing
power reliability and reducing costs. They can also increase
energy efficiency by avoiding alternating to direct current (AC
to DC) conversion from the mains [7]. The main grid also
benefits from better management of intermittent renewable
energy sources and improved resilience.

Microgrids energy management systems (EMS) must de-
termine the energy flow that will minimize the overall cost
to the user or society [5], [8], [9]. The EMS controls battery
charge scheduling, PV power export, and grid power imports.
While the costs of using the grid and selling PV power
are determined by the utility and the electricity spot market
[10], the LIB cost depends on battery degradation. Battery

degradation remains the subject of much research, but models
of varying complexity are used to quantify lifetime accurately
[11].

EMS may be centralized or decentralized [9]. Decentral-
ized architectures are considered ‘autonomous’ because the
microgrid components receive little to no instruction from a
central controller. The units follow a certain strategy or act
as decision-making agents [4]. While more resilient and often
offering faster computation times, decentralized EMS strate-
gies rely on high-performance interconnected communication
networks. This increases system complexity and cost. Thus
centralized architectures are still widely used.

Many EMS strategies have been developed [5]. Simple rule-
based methods include load-levelling (LL) or self-consumption
maximization, where the battery is used to store as much PV
power as possible [3]. More advanced model-based methods
use load and weather forecasting to perform peak shifting
(PKS) or time-of-use arbitrage, which draws grid power during
cheaper periods to avoid power use during the peak.

Model predictive control (MPC) is a popular centralized
model-based EMS that can manage multiple constraints over
dynamic time periods [7], [12], [13]. A MPC-based EMS
determines the optimal control signals for a given future time
horizon at each instance of optimization. Horizons can last
from a few minutes to several hours or days. At the component
level, MPC ensures that the load power demand and safe
operation constraints are always met [13]. At the grid level,
MPC minimizes the total operating cost based on predicted
energy flows over the horizon. Optimization variables may
include the battery charging rate and duration, grid use, or PV
market participation. Since MPC may have long computation
times, neural networks were used to replace the traditional
discrete-recursive model definitions [7]. MPC has been used
in numerous studies but it remains unclear whether it is always
more cost-effective than a simpler EMS, or only in specific
conditions.

To better understand the effects of different EMS strategies
on system performance, we study three EMS algorithms
applied to a residential PV-battery microgrid in Long Island



Fig. 1. Microgrid system diagram showing energy flow and components
including the battery management system (BMS)

suburbs of New York. Real data is used to simulate system
performance using LL, PKS, and MPC EMS, representing
increasing levels of sophistication. Costs from the grid, battery
degradation, and PV credit are derived and assessed using
different assumptions. The novel RHD overpotential ECM is
used to simulate the LIB cells [14]. We show that the benefits
of the MPC EMS relative to LL or PKS depends on costing
and modelling assumptions.

We continue in Section II to describe PV, battery, and EMS
modelling. In Section III we describe our data and costing. In
Section IV results are presented and discussed. We conclude
in Section V.

II. SYSTEM DESIGN

A. Photovoltaic array modelling

PV power generation is proportional to the solar irradiation
Psun [Wm−2] received by the panel. The array is modelled
from the cell level using

I = Ip − Is
(
e

V
nVT − 1

)
− V

Rsh
(1)

where I is the cell current, V is the cell voltage, Ip is pho-
tocurrent (determined by Psun), Is is diode saturation current,
VT is the diode thermal voltage, Rsh is shunt resistance, and
n is the diode ideality factor. Series resistance is assumed
negligible.

We simulate a four-panel array with area 4 m2, Ns = 60
cells per string, and Np = 8 parallel branches (2 branches
per panel). Assuming the cells are identical and operate in
identical conditions, the array current and voltage are given
by Iarray = NpI and Varray = NsV . A DC-DC converter is
often used to control the cell voltage to obtain the maximum-
power-point (MPP). We assume that the converter is lossless
and that the PV system achieves MPP within one sampling
interval.

B. Battery modelling

The EMS uses the newly-proposed RHD model [14], [15],
an overpotential ECM linking diffusivity with battery state of
health. The terminal voltage is given by

v(tk) = VOC(z, tk)− Vs(tk)− Vct(tk)− VD(tk) (2)

where VOC is the open-circuit voltage (OCV), z(tk) is the
cell state of charge (SoC), tk is the time at step k, and Vs,
Vct, and VD are the solution, charge transfer, and diffusion
overpotentials. Standard NRC equations govern Vs and Vct,

x`(tk+1) =
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)
x`(tk) +

(
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∆t
R1C1

)
i(tk)

Vct(tk) = R1x`(tk), Vs(tk) = R0i(tk)
(3)

with resistances R0 and R1, capacitance C1, and sampling
interval ∆t. Note that each variable is a real integer when
only 1 RC-pair is used. The diffusion overpotential is defined
with M = 2,

xν(tk+1) = Aνxν(tk) +Bvu(tk)

VD(tk) = Cνxν(tk)
(4)
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where xν ∈ RM+2 is a column vector, Aν(k) is a sparse
square matrix with elements on the superdiagonal, Bν is a tall
sparse matrix with M + 2 rows and 2 columns, Cν is a row
vector, and AD is the diffusion constant.

Given a power demand P (t), the current and voltage must
meet the demand at each time step,

P (tk) = i(tk)v(tk) (6)

Since the current input lags the state update vectors by 1 step,
we substitute equations (2)-(5) into (6) then rearrange to obtain
current from the quadratic equation,

i(tk) =
−Vst +

√
V 2
st − 4R0P (tk)

−2R0
(7)

where we define Vst for concision,

Vst = VOC(tk)− Vct(tk)− VD(tk) (8)

During discharge, V 2
st > 4R0P (tk) for the equation to yield

a real value. This reflects the maximum power transfer limit.
During charge, P < 0 so the argument of the square root is
always positive.

Battery degradation is modelled using simplified solid-
electrolyte interface (SEI) layer dynamics at the negative
electrode (NE) [16], assumed to be the dominant degradation



TABLE I
DEGRADATION MODEL PARAMETERS

Symbol Definition Value [units]
J0,s(z) Exchange current density, side [Am−2]
Un(θ) NE equilibrium potential [V]
θ(z) NE lithiation state —
J0(z) Exchange current density, main [Am−2]
F Faraday’s constant 96485 [Cmol−1]
Us Side reaction equilibrium potential 0.2 [V]
R Ideal gas constant 8.314 [Jmol−1K−1]
T Temperature 298 [K]
θmin Minimum lithiation 0.05
θmax Maximum lithiation 0.85
an Volumetric density coefficient 1 [m−1]
Aneg NE cross-sectional area 0.0596 [m2]
`neg NE length 88 [µm]

mechanism [17]. This growth is quantified with a ‘side-
reaction’ flux js(tk) that does not contribute to intercalation,
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AB +A

√
B2 + (1− 2CA)

1− 2CA
(9)
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where definitions of variables and constants are shown in Table
I. A four-harmonic Fourier series interpolation of the data in
[18] is used for J0, assumed to be 4 orders of magnitude
greater than J0,s. NE equilibrium potential Un is defined using
the pseudo-OCV measurements from a graphite half-cell, with
lithiation θ limited by θmin and θmax. Other constants are as
listed in [19].

By assuming SEI formation dominance, side-reaction flux
becomes directly proportional to the degradation rate. Total
capacity QT (tk) is then calculated using

QT (tk) = QT (tk−1) + anAneg`negF∆tjs(tk) (11)

which shows degradation is exacerbated by high SoC and
charging current. The equations governing the evolution of
parameters with state of health (SoH) are given by

R0 = 0.25∆SoH + 0.05, R1 = 0.45∆SoH + 0.01

C1 = 300 · 102.301∆SoH, AD =
√
e−(23−35∆SoH)

(12)

where
∆SoH(tk) = 1− QT (tk)

QT (0)
(13)

In the battery pack, it is assumed that all cells are identical
Ns = 60 cells per series module, and Np = 14 branches in
parallel so the pack voltage and current are given by vpack =
Nsv and ipack = Npi. Nominal pack voltage V nompack = 50 V is
equal to the value in [20]. Nominal cell voltage V nomcell = 3.6 V
is based on INR18650-20R characteristics [21]. Nominal pack
capacity Qnompack = 10 kWh is comparable to average battery
pack size in a residential household. Cell charging currents

are limited to 3A, discharge currents are limited by the load
demand, and SoC is limited to the range [0.05, 0.95].

C. Energy management strategies

The microgrid demands that the following equality con-
straint be met at each time-step:

PL = PPV + PB + PG (14)

where PL is the load demand, PPV is the PV array output, PB
is the battery power output, and PG is the power drawn from
the grid. Grid power must be imported if the power supplied
by the PV array and BESS do not meet the load demand. If
PL < PPV , then PV power may be exported. The grid may
also charge the battery if PB < 0 and |PB | > PPV . All power
electronics and transmission lines are assumed lossless, and
microgrid control techniques are assumed to achieve perfect
stability with instantaneous communication.

Since the LL EMS is rule-based, it operates the battery using{
if PL − PPV ≥ 0, PB ≥ 0

else PB ≤ 0
(15)

and draws grid power or allows PV power to be sold only
when the battery is empty or full. It can be seen that LL
encourages PV power to be stored in the battery but this may
not minimize the total cost.

The model-based EMS use load and PV forecasting to
inform the operating choices. Each day is divided into four
periods, shown in Fig. 2, that can be used to characterize the
EMS. Forecasting error for the load is represented using

P̂L(tk) = aw(tk − t0)PL(tk) + w(tk) (16)

where (̂·) refers to predicted values, y is the true value, t0 is
the time at which the prediction is made, aw ∈ R is a random
normally distributed number generated at t0, and w(t) ∈ R
is additive white Gaussian noise. Thus the absolute load
prediction error increases as the prediction horizon (tk − t0)
increases. Forecasting for PV generation is represented with

P̂PV (tk) = |1 + aw + 0.25w(tk)|PPV (tk) (17)

Since the sunrise and sunset times are well-known, PV fore-
casting error does not increase over time, but rather under- or
over-predicts.

PKS uses energy forecasts to charge the battery in period
1 such that no grid power is needed during period 3 (peak).
At the first sampling instance of the day, it estimates the load
and PV energy difference during the day and during the peak,
and the currently available energy in the battery pack,

∆Epk =

∫ 16h

trise

(P̂L − P̂PV )dt−
∫ 20h

16h
(P̂L − P̂PV )dt

EB = zQTNpV
nom

pack

(18)

where trise is the sunrise time. If ∆Epk+EB < 0, then the EMS
determines that there is insufficient energy to avoid grid power



Fig. 2. Four time periods used by the model-based EMS strategies, PKS and MPC
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Fig. 3. Comparison between EMS algorithms for for base case costing and modelling assumptions, showing (a) Cumulative annual cost, (b) Battery capacity
fade, (c) Average daily cell SoC, (d) Average daily power, and (e) Cost profiles
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Fig. 4. Plots showing how net cost varies with simulation parameters relative to the reference base case assumptions, for (a) MPC horizon length, (b) MPC
update period, (c) Prediction error, and (d) Degradation cost, Load demand, and PV credit,



during the peak. In this case the battery charged throughout
period 1 at the rate

PB(period = 1) =
∆Epk + EB

T1
(19)

where T1 is the length of period 1 which varies according the
time of sunrise. During period 4 it follows the LL rule. Thus
PKS aims to minimize the amount of grid power drawn during
the doubly expensive evening peak period.

The MPC EMS acts during periods 1 and 2 for a specific
horizon length TH and update period Tr. At each relative
sampling instance r, it minimizes a cost function for all
k∆t = rTr following

minimize fcost(rTr, TH , PB)

subject to PL = PPV + PB + PG

− 1000 ≤ PB ≤ 0

period ∈ {1, 2}

(20)

fcost = cgridP̂
+
G + cdeg∆̂Q(TH , PB) + ĉPV |P̂−

G | (21)

where k, r ∈ Z+, cgrid, cdeg, and cPV are the rates for grid cost,
degradation cost, and PV credit, ∆̂Q is the predicted capacity
loss over the horizon length, (·)± refers to positive or negative
values, cgrid, ĉPV are row vectors and P̂G, P̂L are column
vectors of length TH/∆t. Here, the optimal battery charging
power P ?B is obtained using a basic grid-search algorithm
with tolerance 10 W. It can be seen that MPC is sensitive to
several parameters, including cost weightings, horizon length,
and update period. We thus examine several combinations of
TH and Tr, with reference values TH = 16 h and Tr = 30 min.
Unlike the other EMS strategies, MPC explicitly considers the
total system cost and aims to achieve the lowest value.

III. DATA AND COSTING

We use real data to simulate the annual energy flow occur-
ring in an average Long Island household in Nassau County,
New York, in 2021. Annual household load data is obtained
from [22] and scaled to match the average residential energy
use in Long Island. We examine a variety of costing scenarios
relative to the ‘base cases’. One simulation parameter is
changed while the others remain constant. Normalized values
are defined using the reference load energy demand, PV credit,
and degradation costs that are described below.

Grid costs are determined by the 4-hour peak option from
the Long Island power authority [23], where grid power costs
$0.20 during the evening peak from 16:00 to 20:00, and an
average of $0.10 otherwise. Solar irradiation profiles for the
Long Island area in 2021 were obtained from the National
Solar Radiation Database [24].

The New York State Energy Research and Development
Authority mandates that electric utilities provide credit to
residents with PV installations based on the value of dis-
tributed energy resources (VDER) calculation [10]. The VDER
is composed of the ‘value stack’, which quantifies the benefits
from supplying PV power to the grid. The VDER is composed
of market, capacity, environmental, and community credits

[23]. The market rate [$ MWh−1] is determined by the day-
ahead market locational-based marginal pricing reported by the
New York Independent System Operator [25]. Other credits
are combined to yield an additional credit of approximately
$136.03 MWh−1.

Several methods have been used to quantify degradation
cost, such as energy throughput [26] or number of cycles [3].
Assuming a replacement pack is ordered as soon as the battery
pack loses 40% of original capacity, degradation cost can be
derived purely from the capacity loss. There are, however,
environmental, economic, and social benefits from battery
storage that are beyond the scope of this report [27]. Thus
a scaling factor is chosen to significantly reduce the cost to
cdeg = $2.07 Ah−1.

IV. RESULTS AND DISCUSSION

Results using the reference parameters are shown in Fig.
3. It can be seen that the different EMS algorithms result
in distinct profiles. From Fig. 3a we see that the highest
cost is from LL. In Fig. 3b PKS degrades the battery most
significantly. Annual costs can be explained by the average
daily profiles in Figs. 3c-e.

In LL, the battery is charged using PV power around noon.
Since there is no forecasting, the LL EMS suffers from high
grid costs during the evening peak because the battery cannot
meet the full load demand. In PKS, the battery is charged
twice: first in the early hours and second around noon. This
allows grid costs to be significantly reduced during the peak
period and PV power to be exported. Some grid power is still
drawn during the peak because of imperfect forecasting, which
may also increase battery degradation due to the elevated SoC
levels. In MPC, there is only one major charging period and
the EMS minimizes battery use during the day, preferring to
export PV power for credit. Thus MPC trades higher grid costs
in the evening for significant PV revenue during the day.

In Fig. 4 the effects of costing and modelling assumptions
can be clearly observed. First, in Figs. 4a-b, the net cost
of MPC is strongly dependent on horizon length and lightly
correlated with update period. MPC cost is minimized for
horizon 18 h and half-hour update period. This shows the
importance of parameter tuning for a given set of conditions.
MPC is less sensitive to prediction error compared to PKS as
shown in Fig. 4c, which may be explained by its consistent
updates. In Fig. 4d, LL and MPC are equally sensitive to
degradation cost, with PKS more severely affected. Changing
the load demand affects all EMS equally. PV credit creates the
most significant discrepancies. As the PV credit goes to 0, all
the EMS have approximately equal costs This suggests that
the advantage of using a model-based EMS disappears and
may even be detrimental if there is no benefit to exporting PV
power.

As expected, the lowest net cost is achieved by reducing
degradation cost and load demand and increasing PV credit.
Our results strongly indicate that model-based EMS are needed
to fully exploit the cost benefits under these conditions. In
other regions of the world besides our chosen example of Long



Island, New York, degradation costs may be higher and the
PV credit may be reduced due to remoteness or geographical
constraints. As our results show, a rule-based EMS like LL
would be superior in these conditions.

Modelling assumptions create discrepancies with a real
system. Power electronics losses and low-level converter con-
trol are important for components such as the PV array and
would be important considerations. Errors in the degradation
model may underestimate the effects of low SoC, positive
electrode degradation, and temperature. Using a higher fidelity
degradation model would likely increase costs in simulation
but improve EMS performance in a real system [11].

V. CONCLUSION

A grid-connected PV-battery microgrid was simulated using
real year-long data for an average household in Long Island,
New York. Physics-derived models were used to simulate
the PV array, battery overpotentials, and battery degradation.
Costs are derived using market-based analysis. LL, PKS,
and an original MPC EMS were formulated to understand
the variation of net costs with a wide variety of simulation
parameters. We show that model-based EMS strategies are not
necessarily superior to simple rule-based EMS if degradation
costs are too high or the PV credit rate is too low. Still, the
MPC EMS most consistently results in the lowest costs.

There are several areas for future work. More comprehen-
sive degradation modelling can be used. A lower sampling
interval would allow effects of transient overpotentials to
be examined. To verify simulated results, a laboratory-scale
model could be created. In a real microgrid, savings could
be obtained in a real household system with only a software
update. In higher-cost regions, government subsidies can not
only help reduce the market value of utility costs, battery
degradation, or PV credits, but also allow advanced EMS
algorithms to optimize the energy flow and reduce net costs
even further.
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