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Abstract—Energy storage systems with Lithium lon bat-
teries require balancing due to individual cells having
manufacturing inconsistencies, different self discharge
rates, internal resistances and temperature variations. Non-
dissipative redistributive balancing further improves on the
pack capacity and efficiency over a Dissipative approach
where energy is consumed across shunt resistors. This
paper presents a high level, fast model predictive control
in continuous time. The optimization problem uses perfor-
mance metrics to balance the SoC in the battery pack.lt is
shown in simulation that MPC achieves a single point con-
vergence of the state of charge when compared against a
common rule based algorithm. This improves the efficiency
of the power electronics and prolongs the life of each
battery cell since frequent switching between charging and
discharging of intermediate cells is avoided. Experimen-
tal results are presented to show a Redistributive battery
balancing system that achieves a balanced state in the
minimum amount of time by coupling the Fast MPC with
microcontrollers available on todays market.

Index Terms—Control strategy, electric vehicle, fast
model predictive control, hybrid vehicle, Lithium-ion bat-
tery, redistributive cell balancing

[. INTRODUCTION

LECTRIC Vehicles (EV) have gained significant atten-

tion due to elevated atmospheric pollution, a spreading
concern for the reliance on fossil fuels as well as harsher
government policies on carbon emissions and greenhouse
gases. However, wide adoption of EVs requires improve-
ments in battery technology [1]. Many applications such as
aircraft e-taxis, hybrid diesel trains, electrified buses and
electric vehicles use Lithium Ion batteries because of their
high energy density, low self-discharge rates and high cell
voltage. When constructing a Energy Storage System (ESS)
for these applications, many cells are connected in series to
achieve higher power requirements, but will lead to a nearly
exponential reduction in the battery life as the number of
cells increases [2]. This reduction of battery life is primarily
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caused by cell imbalances over time which occur due to
manufacturing inconsistencies, different self discharge rates,
internal resistances and temperature variations.

Protection of Lithium-ion batteries experiencing over and
under voltages is essential to maximizing the health and safety
of the cells [3]. If over voltage occurs, production of CO,,
C,H, and other gases will increase the internal temperature
and pressure causing severe battery damage or an explosion
[4]. If under voltage occurs, internal reactions cause the cell to

TABLE |
BALANCING SYSTEM PARAMETERS

Lithium Ion Battery Symbol Value/Unit
Number of cells n 6
Number of links m 6
Battery Cell number i lton
Link number l 1tom
Rated Cell Capacity c 8 Ah
Normalized Balancing current a luz] <1
Measured Cell Voltage Ve 25t042V
Stack Voltage Vs >ia(Vei) v
Nominal Cell Voltage Va 37V
Average cell current e A
Average stack current {¢ A

Flyback Converter Symbol Value/Unit
Cell side inductance L¢ 3.05 uH
PE Switching Period Tp 0.5us - 15us
Turns Ratio N, 1:2
Converter efficiency n 90%
Maximum Power p 2W - 2.5W
Primary peak current fp 10A
Secondary peak current I, 5A
Instantaneous Primary current ip A
Instantaneous Secondary current is A

General System Symbol Value/Unit

High level Sample Time Ts 180 s
Operational Sample Time Ta 30 s
Balance Time Ty <Tys
Maximum Link Current M, 35A
Maximum Operational Link Current I 0.517 A
Estimated Discharge Current ?d A
Estimated Charge Current ie A
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Fig. 1. Individual Cell to Stack topology showcasing battery string,
power electronics and connections.

lose a large part of its capacity. The voltage of a battery cell
is related to its remaining energy i.e state of charge (SoC).
Therefore, a weak cell is defined as one that has a lower
SoC than the others in the pack. Likewise a strong cell is
one that has a higher SoC. Without a on-board balancing
system, the cells capacities would drift apart causing weak
cells to dominate discharging time and strong cells to dominate
charging time. A Battery Management System (BMS) is
implemented to avoid the harmful effects of cell imbalances,
improve the effective capacity of the pack and keep each cell
within a predefined operational safety region.

A balancing system is categorized as either Dissipative or
Non-Dissipative. The Dissipative balancing approach draws
excess energy from strong cells then dissipate this energy as
heat through external shunt resistors [5], [6]. This method,
although inexpensive is wasteful of energy that can be re-
purposed elsewhere. The Non-dissipative redistributive tech-
nique shuttles the excess energy from the strong cells into the
weak ones using power electronics [7]-[9]. Three approaches
of achieving redistributive balancing are cell to cell (C2C),
cell to stack (C2S) and stack to cell (S2C). A C2C approach
transfers the excess energy between adjoining cells. A C2S
approach transfers the excess energy from strong cells then
redistributes it back onto the battery stack. Likewise, a S2C
approach transfers the excess energy from the battery stack
to the weak cells. By Combining the last two methods, it
is possible to simultaneously charge and discharge individual
cells.

This paper shows how to model the system by taking
advantage of slow time varying cell dynamics and average
currents through the power electronics. A fast Model Pre-
dictive Control (MPC) balancing algorithm is then proposed
based on the performance metrics outlined in [9]. In order to
solve the MPC algorithm, a simple Linear Programming (LP)
solver is developed for Microcontrollers available on todays
market. Simulation results are presented which compare a
Rule based strategy (RBS) to the MPC approach. The RBS
method has many switching periods of intermediate cells that
hinder the efficiency of the power electronics and reduce each

cells battery life in the system. The implementation details
are provided by means of a low level actuation strategy
coupled with the fast MPC to apply the correct amount of
balancing current. Finally, experimental results are shown for
balancing a redistributive C2S (discharge) and S2C (charge)
configuration based on a multiple transformer topology that
uses bi-directional flyback converters to realize the battery
currents. The nomenclature used in this paper is shown in
TABLE L

[I. BATTERY SYSTEM DESCRIPTION

A battery pack in a redistributive balancing system is
defined by n series connected battery cells with m number
of links. Each cell is described by the amount of charge via
Q,x(t) € R™. The matrix

c, 0 0
0 C, 0

Qm — c R™Xn
0o 0 ... C,

is a diagonal matrix defining charge capacities for cell 1 to
n respectively and the state of charge (SoC) is

x(t) = [ 1 o Ty }T e R™.

Each element in the SoC z(t) vector ranges between zero
and one where the value of 0 corresponds to a completely
empty cell and the value of 1 corresponds to a fully charged
cell. For the system to become balanced, charge is moved
between m links. The balancing current being transfered
through the links is Qu(t) € R™ where u(t) is a vector
containing the normalized balancing currents and

I;m 0 ... 0
0 Irs ... O
Qu — 6 Rmxm
0 0 Tim

defines a diagonal matrix containing the maximum current
each link can handle.

The connection between n cells and m links is defined by
a topology matrix T € R™ . It describes how the balancing
charge is transfered (from and to each cell). The bi-directional
C2S/S2C configuration based on a multiple transformer topol-
ogy from [9] and shown in Fig. 1 is used in this research
where

Sl 3=

Sl
Sl

6 RnXm

1 1 1
— — oo —=1
n n n

This topology is used for reference where the concepts can
be applied to other topologies found in [9]. In the multiple
transformer topology, charge is removed from one cell and
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distributed equally amongst all the cells in the stack. Likewise,
the charge can be removed from the entire stack then added
to a single cell. Each cell has its own unique link to the stack
which allows for simultaneous movement of charge to and
from multiple cells.

The charge stored in a battery cell is modeled using simple
continuous time integrator dynamics as

Qu(t) = TQuu(?), 6]

where the topology matrix T relates the normalized balancing
currents u(t) with the SoC x(t). A sign convention of u(t) >
0 indicates a flow of charge from the cell to the stack and
u(t) < 0 indicates a flow of charge from the stack the cell.
The system dynamics can now be simplified to

i(t) = Bu(t), 2)

where B = Q' TQ,. Thus, a battery cells state of charge in
terms of a control input at the final balancing time 7, is

2(r) = 2(0) + B /OT w(t)dt, 3)

where 7 is the time to balance, i.e. the time required to balance
the battery pack. The maximum rated link current limits
the applied balancing current. These balancing currents are
subject to polyhedral constraints that depend on the topology
[9] [10]. We define a inequality constraint based on the
maximum amount of current through each link |u;| < 1 for
I = 1,2,...,m. Thus the inequality constraint set for this
topology is

ut) e{u e R™ -1 <y <1} “)

From Proposition 1 [9] there exists a constant input trajectory
u(t) = @ such that

z(r) = 2(0) + Bar. Q)

The equality constraint on the system dynamics is defined
by transforming (5) into a regulation problem using the
transformation matrix

1 -1 0 0 O
0o 1 -1 0 O

L= ) c R(nfl)xn
0 0 0 1 -1

This matrix L removes the average SoC and leaves the
unbalanced SoC such that the equality constraint now becomes

Lz (0) + LBur = La(7) = 0. (6)

The constraints for the system are written as Hu < K for
the inequality constraint and H.,u2 = K., for the equality
constraint.

[1l. PREDICTIVE CONTROL

In [9] performance metrics have been developed to evaluate
hardware. However, this paper proposes to use the minimum
time to balance (t2b) metric as a balancing control. This
metric is used for reference and the concepts can be extended
for minimum energy to balance (e2b) or a combination of

both. In the previous section, a constant balancing current
trajectory # must be found such that the battery cells become
balanced in a finite amount of time 7. This constant current
will ensure a single point of convergence of the SoC. This
reduces any micro-cyles between charging and discharging of
the intermediate battery cells [11] and increases the balancing
efficiency.

The constrained linear optimization problem is formally
expressed as

T(z) = Inini>mize7' (7a)
subject to Lz + LBur =0 (7b)
Hur — K7 <0 (7¢)

To efficiently solve (7a) using popular Linear programming
solver packages such as LPSOLVE, CPLEX or MOSEK, it
is worth reproducing the problem in standard form. This is
achieved by defining a new column vector containing both

variables
z = ,
-

where v = ur. It is important to realize that Lz is a parameter
and is treated as a constant. The minimum time to balance
problem (7a) in standard form becomes

2* = minimize g’z (8a)
subject to Acqz = beg (8b)
Az<b (8¢)

where A, = [LB 0], beq = [-Lz 0], A=[H—k],b=0.
Many simple solvers are more efficient when dealing with-
out equality constraints such as qpOASES. This is not manda-
tory but by removing the equality constraint from (8a), the
dimensions of the optimization problem are reduced.
To do this, we introduce a linear transformation

s =Fz+ 2 9)

where F is the nullspace of A4, such that FA., = 0 and zg
is any solution of A.,z9 = bcq. Equation (9) is substituted into
(8a) to ensure that the equality constraint is still satisfied but
is now removed from the problem. Thus, we formally define
the minimum time to balance problem in standard form with
the removed equality constraint as

(10a)
(10b)

Z* = minimize ¢’z
subject to Az < b

where A = AF, b=0b— Az,.

The performance metric is now used to define a model
predictive controller. The controller is executed in discrete
time steps k and at each time step the optimal control problem
is solved. The problem is reiterated using the updated state.
Hence, we introduce the discrete time dynamics

Lz + LBar = 0. (11)

To adapt this into a discrete time MPC controller, at each
sampling time instant k7, the problem requires information
regarding the SoC of each battery module in the system. The
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state of charge x is not measurable but can be estimated
according to y = C(z) where y is the voltage associated with
the battery terminals and C is some nonlinear mapping [12].
Advanced methods for SoC estimation are Kalman filters [13],
neural networks [14], electrochemical impedance spectroscopy
[15] and fuzzy logic [16], [17]. For the development of the
fast MPC controller, we assume the SoC is reconstructed with
sufficient precision. By solving (10a), we then find the optimal
7* and @*. We introduce a scaling factor v that scales down
the control if 7* is smaller than the sampling period 7% such
that the process leads to the following closed loop dynamics

xlk + 1] = z[k] + vT:Bu*[k] (12)
where
= for T <T
= Ts — s
v { 1 for7">T (13)

This sequence is repeated for each sampling instant until the
system becomes balanced, i.e Lz[k] = 0.

IV. SOLVER

Several commercial and open-source software packages
are available to solve linear programming (LP) problems.
Some packages allow easy integration with MATLAB and
Simulink as well as other simulation software. The inputs
of the solver are typically the parameter matrices that define
the cost function and constraints in standard form. If the
problem is feasible, the solver produces a suitable approxi-
mation of the optimal vector. However, applying LP solvers
on available microcontrollers (MCU) is challenging because
(1) the code needs to be recompiled for a given platform
that rules out commercial software where the source code
is not available; (2) MCU’s support almost exclusively c-
programming language that rules out large solver projects
that have cross-dependencies on other programming languages
or are optimized for x86 architectures with assembly code
or processor specific extensions; (3) the RAM of MCU’s
is typically measured in kB (68kB for the widely used TI
F28335, 512kB for the TI F28377D that is used in this work)
and even compact LP software, e.g. LPSolve, require several
MB of program memory. Regarding (3), RAM can certainly
be added to a control board but this approach increases
complexity and cost. In this research, a “micro (i) solver” is
implemented to show the viability of the proposed fast MPC
control method.

TABLE II
SOLVING TIME COMPARISON RESULTS
Dimensions 6 12 18 24 32 40 80
“'(z‘;lcv)er 0.124 0345 0338 0366 0372 0386 4211
qp(?i)SES 0014 0085 0189 0222 0278 0325 0462
C(P;Iéf)x 0216 0215 0218 0219 0216 0217 0274

TABLE IlI
SOLVING SOLUTION COMPARISON RESULTS
qpOASES p-solver p-solver
(Benchmark) (Simulation) (Experimental DSP)

0.747968 0.74797 0.74797

0.166862 0.166862 0.16686

ulk] 0.404288 0.404289 0.40429
0.252569 0.252569 0.25257

-1.00000 -1.00000 -1.0010

1.00000 1.00000 1.0010

7(min) 20.982 20.9994 20.9993

A simple solver method that can operate with limited
memory is the gradient method. This approach is typically
not used as an LP solver due to efficiency concerns. The
projected gradient method has linear time complexity [18]
that is (on average) slower compared to other solvers, e.g.
the simplex method or an interior point method. However,
battery balancing can be implemented with relatively large
sampling periods such that solver time is less critical compared
to memory usage. The gradient method uses the gradient of
the cost function (10a) to find the optimum iteratively. The
method starts with an initial guess z; = z¢ at iteration ¢ = 0.
The direction of steepest descent i.e the search direction

§z=-V.,((10a): ¢'z) = —g, (14)

is constant for an LP because the minimum is always located
in a vertex of the hyperplane. For an LP, the cost function does
not define the minimum. It is found by iteratively using a max
decent step and a projected step. Thus, the optimal vector is
updated according to

yi+1 = Zj —|— 52, (15)

where z; is the guess for an optimum at iteration 7. The vector
1;+1 does not necessarily satisfy the constraints. Hence it is
projected onto the feasible set C = {z € R™ | Az < b}, i.e.

Zi+1 = PIOjoYit1- (16)

Where proj. denotes the orthogonal projection onto the affine
C. In practice, the projection is obtained iteratively with a
Van Neumann type algorithm. The decent step will eventually
violate the constraints and the projected step ensures we
obtain a feasible point. It is noted that also this projection
method has a linear time complexity and is used due to
simplicity. The resulting solver has been compared to CPLEX
and qpOASES in TABLE II. The results show that the -
solver can solve small problems reasonably fast. However, the
p-solver performs suboptimal at higher dimensions, i.e. large
battery stacks (due to the projection operation) and will be
subject to further research. Evaluating the results, it should be
further taken into account that the p-solver is run as interpreted
MATLAB code (ported via code generation onto the MCU
platform) and CPLEX is highly optimized for x86 platforms
and called through the MATLAB interface.

To reduce the solver time, the gradient algorithm is com-
bined with two techniques. The first is a warm start scheme
that uses an initial guess to reduce the number of iterations
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Fig. 2. Physical test bench with battery pack, balancing hardware,
monitoring and control board. The Lithium lon battery pack is comprised
of 3 Panasonic 18650 cells in parallel (module) and 6 modules in series.

required to converge onto the solution. Since MPC requires
SoC to solve a similar optimization problems multiple times,
the solution of the k£ — 1 sampling instant can be used as
initial guess at time step k. The second technique is early
termination that stops the solver after a predetermined number
of iterations. Although this may result in a sub-optimal control
sequence, it is guaranteed to be feasible due to the projection
operation [19]. In practice, these techniques often provide
good performance since the measurements tend to be similar
in two adjacent sampling instants [20]. To further evaluate the
p-solver, TABLE III shows a comparison with gqpOASES in
a simulated environment and on the experimental DSP. The
optimal balancing currents % and the time to balance 7 are
solved at the first sampling time instant i.e £ = 1. The results
show a nearly identical solution in all three environments.

V. IMPLEMENTATION DETAILS
A. Test Bench

To showcase the non-dissipative redistributive balancing
approach, experiments are conducted on the testbench shown
in Fig. 2. The first main component in the system is a
modified DC2100A demo board from Linear Technology. On
this board is a LTC-6804 monitoring chip that measures the
cells voltages. It has internal over/under voltage protection and
conveys the information via SPI to the control DSP. It also
features a LTC-3300 chip that controls the mosfets for the
flybacks converters. Each flyback module operates in critical
mode utilizing a pulse frequency modulation (PFM) strategy
descried in [21]. How this works is when the primary switch
for a module is closed while discharging a cell, it measures the
instantaneous primary current 7,, until a maximum peak current
fp is reached. It then opens the primary switch and closes the
secondary switch to allow the instantaneous secondary current
15 to be released back onto the stack. The flybacks are bi-
directional meaning the process is mirrored for when a battery
cell is charging. Each converter module operates with the
waveforms shown in Fig. 3 - Flyback Operating Waveforms.

The second main component is a custom built battery pack
using Panasonic NCR 18650 cells. In order to handle high
current transfer that the DC2100A outputs, the battery pack

/M“ Flyback Operating Waveforms
on —_ L
g 3 <
gz Converter Converter =t
5
SZ | On Off £
Q50 ©
< B
g3
= ©
o
<

~ DT>

<~ (k) T,—>

T, (k1T
Time (sec)

Fig. 3. Low Level, low frequency actuation scheme illustrating a Con-
stant Operating Point Modulation (COPM) strategy with high frequency
flyback operating waveforms

consists of 6 modules connected in series. Each module has
3 Lithium Ion battery cells connected in parallel. The last
component in the system is a Texas Instruments F28377D dual
core micro controller (DSP). The primary function of core one
is to solve for the optimal normalized balancing current based
on the cells state of charge. The solver described in section
IV is flashed onto the first core of the DSP. It is first written
in MATLAB as functions blocks, then code compiled into
C files using MATLAB Coder. This method allows for fast
prototyping and comparison between a simulated environment
and what is on the DSP. The second core handles all Battery
Management type activities and is connected through SPI to
the DC2100A demo board. Its main tasks are to read cell
voltage, determine state of charge, control how long each
mosfet is on/off for, and to send information to core 1.

B. Low level Control

To actuate the desired current from the fast MPC controller,
a upper level, low frequency control strategy referred to as
constant operating point modulation (COPM) [21] must be
utilized. The fast MPC solves for a normalized current @ that
when multiplied with the upper bound on actuating current
through the power electronics [y, is how much current the
controller thinks the batteries receives i.e i, = I . In reality,
the hardware used to test is either on or off, and operating
with much higher current M,. The relationship between the
two currents I7, and M, is determined offline as
T MaTa
I = T
At Aeach kTs time step shown in Fig. 3, we translate
i. = I, @ into an effective current that works with the COPM
strategy. In [21], estimated current equations provide a close
approximation of the average link current through each flyback
converter. While a cell is being discharged, the estimated
current through the link is

~ LV
T ATAN
The values of the estimated currents are then scaled with
the maximum operating link current M,. These calculations
are performed by the DSP in order to control how long each
switch is on for to achieve the same effective current the fast
MPC controller requires.

a7

(18)
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Fig. 4. Balancing results for (a) Rule based strategy in simulation using a Linear Battery Model, (b) MPC in simulation using a Linear Battery Model,
(c) MPC on experimental test setup. The initial SoC values are 0.749, 0.671, 0.703, 0.682, 0.513, 0.783 for cell 1 through 6 respectively.

VI. RESULTS
A. Simulation - RBS Vs. MPC

In this section, the rule based strategy (RBS) for battery
balancing control is defined then compared against the MPC
algorithm. The working principles of a RBS approach is to
compare each cells SoC with the average SoC. If a cell has
a higher SoC than the average, it is discharged onto the
stack. Likewise, if a cell has a lower SoC than the average,
it is charged by the stack. This simple control method uses
the maximum link current available i.e each cell is always
charging or discharging until all cells SoC fall within a
”balanced zone”. An arbitrary balanced zone is defined in this
paper as 5% and will ensure the balancing stops. Achieving the
single point of convergence in charge levels is unobtainable
due to the current flowing in each cell is always the maximum.
The intermediate cells will reach the average faster than the
maximum and minimum cells. Operating under a RBS control
on a simulated environment using a linear battery model, the
state of charge and normalized balancing currents are shown
in Fig. 4a.

The following statements are made when compared with
the SoC and balancing currents for the MPC approach in
Fig. 4b. During RBS control, cells 2-4 converge faster than
cells 1,5 and 6. The main issue with this is that high switching
currents hinder the efficiency of the power electronics as more
conduction loss and switching loss occur through the mosfets.
The normalized balancing currents from Fig. 4a show that
a reduction in the expected life of the Lithium-ion batteries
will occur due to high C-rates and large number of charge-
discharge cycles [11].

The power consumed by the non-dissipative redistributive
battery balancing system is now compared when using the two
control strategies, RBS and MPC. Before the test begins, the
amount of unbalanced energy is calculated as

B, =) V,ClLalj]|. (19)
j=1
This defines how much energy needs to be shuttled around in

order to achieve a balanced state. Then during each sampling
period T, the amount of consumed power is defined as

By = VaIplalil|(1 - ).

i=1

(20)

Fig. 5¢ shows that the consumed power is doubled when using
RBS, thus is less efficient. This is because the converters are
always on i.e cells are always being charged or discharged.
This shows a clear motivation behind adopting the MPC
approach which is to apply more of a constant current that
results in a single point of convergence between the SoC
values.

B. Experimental

In this section, we simulate a closed loop system and
compare the results with that of an experimental one. We
evaluate the controller and balancing hardware for a system
containing 6 cells in series, each with a rated capacity of
C = 8Ah and each link with a maximum of I;, = 0.52A.
The balancing hardware is carried out using flyback converters
between each cell connecting to the stack of batteries in a
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individual cell to stack topology. The fast MPC controller
decides a reference current based on the cells state of charge
values then the low level control actuates that desired amount
of current for each kT period.

We performed an experimental test for a system that has
an initial unbalanced state with a 27% difference between the
highest and lowest SoCs. The experimental state of charge
and normalized balancing currents are shown in fig 2. These
results are compared to that of the simulated ones shown in fig
3. The balancing currents remain constant over the majority of
the operating window. Slight deviations in a constant current
can be observed but the reason for this difference comes from
the SoC construction. In simulation a Linear battery model is
used to obtain SoC. However, on the experimental setup, SoC
is more difficult to estimate with such high precision, which is
not the focus of this paper. When comparing these results to
RBS control for the same initial unbalance, an improvement
in the battery life and balancing efficiency is achieved due to
less switching between charging and discharging cycles and
a single point of converge in SoC. More over, we compute
the minimum time to balance at each k7 time step during
the experiment. The experimental time to balance 7 deviates
slightly from the simulated 7. Again, this is most likely caused
by imperfections of the estimation of state of charge. However,
the results shown in Fig. 5b remain practically on target to
that of the simulated controllers and thus shows that the the
TI F28377D dual core controller is able to consistently solve
for the optimal balancing current over the entire test window.

According to [22], a specification of balanced is defined
when all battery cells SoC is within a 3% margin. We define
a more aggressive margin set to a 2% difference between all
SoC values. Fig. 5a shows the start of test SoCs with an initial
unbalanced of 27% difference. After balancing has occurred,
the experimental system stops when the target margin of 2%
is reached and a 20mV difference in voltage is measured.

VII. CONCLUSIONS

This paper showcases experimental results for a fast MPC
control approach to balance the cells state of charge inside of a
battery pack. The fast MPC controller may be adapted for dif-
ferent topologies found in [9]. The algorithms presented here
within are adoptable for any series/parallel cell configuration.
This allows for mismatched cell capacities to be balanced.
The minimum-time optimization problem is known to be a
bounded LP (convex), where the projected gradient method
is known to find the optimum in a finite number of steps.
The gradient method was used for simplicity and the ability
to operate with a small memory footprint (necessary for the
microcontroller implementation). Existing solvers use libraries
(e.g. for linear algebra) that cannot easily be compiled for a
specific microcontroller platform. The authors show that the
proposed gradient method works reasonably well for small
problems. An improved p-solver scalability is currently being
investigated.

A system using 6 cells in series with an initial difference
of 27% SoC is conducted to gain the experimental results.
The fast MPC controller is developed based on the minimum
time to balance performance metric in [9]. The fast MPC
controller applies the maximum input « if 7 > T, If
7 < Ty then the input is scaled by a Tls factor. The MPC
approach is compared to a rule based strategy and shows that
constant current will result in a single point of converge of
the SoCs. This reduces any micro-cyles between charging and
discharging of the intermediate battery cells [11] and improves
the balancing efficiency. With the use of bi-directional flyback
converters, a redistributive non-dissipative battery balancing
topology reaches a balanced state in minimum time.
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