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Abstract: This study presents an online multiparameter estimation scheme for interior permanent magnet motor drives
that exploits the switching ripple of finite control set (FCS) model predictive control (MPC). The combinations consist of
two, three, and four parameters are analysed for observability at different operating states. Most of the combinations
are rank deficient without persistent excitation (PE) of the system, e.g. by signal injection. This study shows that high
frequency current ripples by MPC with FCS are sufficient to create PE in the system. This study also analyses
parameter coupling in estimation that results in wrong convergence and propose a decoupling technique. The
observability conditions for all the combinations are experimentally validated. Finally, a full parameter estimation along
with the decoupling technique is tested at different operating conditions.
1 Introduction

The drive systems especially used in high performance applications
are getting smaller and lighter [1]. These benefits are usually traded
with operating the electric machines at their boundaries where the
machine parameters vary significantly. The parameters which
undergo variations are broadly classified as mechanical, thermal
and electrical. This paper focuses on estimation of electrical
parameters of interior permanent magnet (IPM) machines viz.,
stator phase resistance (Rs), d- and q-axis inductances (Ld and Lq),
and permanent magnet flux linkage (cm). The stator resistance
varies with temperature and operating frequency, whereas
permanent magnet flux linkage changes with temperature and
demagnetisation. The inductances vary with saturation of
electromagnetic core. The parameter variations influence the
operation and stability of the control system especially if a
model-based control is used. The online estimation techniques can
be used to track the parameters. However, the system needs to be
observable with respect to the estimating parameters.

The machine model is generally treated as linear by assuming
constant speed and machine parameters. Thereby, it allows the
application of classical linear observability theory to verify the
system observability [2, 3]. The machine can also be modelled as
a linearly varying parameter model. The persistent excitation (PE)
condition is chosen as the observability condition for this case [4,
5]. However, the lack of information about which input needs to
be persistently excited is the main limitation [6]. Another approach
is linearising the machine model in a certain state subspace in
order to apply the linear observability theorem [7, 8]. This
approach is very localised and lacks the sense of observability in
the entirety of the state trajectories. The analysis of global
observability of the non-linear dynamic system is difficult in
practice [9]. The construction of a global observer which
converges every trajectory is impossible as the non-linear system
attempts many singular cases on the go. The local observability is
a powerful concept which can be applied to any non-linear
systems [10]. The concept distinguishes states only from their
neighbours. The theory proposed by Hermann and Kerner with the
help of Lie-theoretic characterisation is one of the most widely
used methods [11]. The theory shows that the rank criteria are
sufficient to verify the local observability of a non-linear system.
The estimation of one parameter is always observable as long as
the operating states meet the required conditions. For example, the
condition v = 0 for estimating cm. On the other hand, the
observability of simultaneous estimation of two or more parameters
depends on the combination in addition to the operating states [12].
The non-linear observability analysis of electric machines available
in the literature is mainly based on the concept proposed by
Hermann Kerner [12–14]. The observability analysis used to
estimate parameter combinations without PE for a permanent
magnet machine is presented in [12]. It is shown that the estimation
of Rs and Ls is always possible as long as speed and iq are
non-zero. The observability conditions for estimating speed, position
and resistance for induction motor (IM) and permanent magnet
synchronous motor (PMSM) are presented in [13], while the
observability conditions to estimate position for surface permanent
magnet (SPM) and IPM are analysed in [14]. It is shown that IPM
is always observable in contrast to SPM. As there is an opportunity
for IPM to make the system rank sufficient even at zero speed by
persistent current injection. The literature available so far analyses
the observability of a few parameter combinations but a detailed
analysis covering all the possible combinations is lacking.

Not all the parameters are observable for IPMs at steady state [12,
15]. This problem can be overcome by injecting high frequency
signals. The full parameter estimation, achieved by injecting sine
and square wave signals at the d-axis is, compared in [15] and it is
shown that the sine wave injection has faster convergence. The
robustness of the estimation of all the parameters with signal
injection is improved by decoupling slow and fast parameters with
two differently sampled recursive least square (RLS) estimators
[16]. The slow parameters from the high frequency model and the
fast parameters by RLS are estimated [17]. A complete decoupling
is achieved in this case by the fact that the two estimators are
based on different models (high frequency and fundamental). In
[18], two affine projection estimators are used for slow and fast
parameters. The full parameter estimation is fairly established in
the literature besides the fact that some of the details are not well
addressed. This includes the possible higher discretisation error
due to lower sampling rate associated with slow parameter
estimation and the parameter dependencies. The dependency
between Rs and cm is mentioned in [19], however a detailed
analysis and compensation techniques are not presented.
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This paper focuses on detailed observability analysis of all the
possible combinations consisting of two, three and four
parameters. The observability at worst-case scenarios such as
steady state, id = 0, and v = 0 are analysed and the scenarios
which require PE are identified. The current ripple due to inherent
high frequency vector injection of model predictive control with
finite control set (MPC-FCS) is considered in this paper as PE [20,
21]. This paper also shows that parameter coupling between Rs
and cm is significant for the reference IPM machine. This
phenomenon is analysed and a compensation technique is
proposed. The RLS is chosen as the estimator in this paper. The
observability of different combinations of the parameters is
validated experimentally. The full parameter estimation with
decoupling technique is tested for different operating points. This
paper is organised as Section 2 covers the theoretical observability
analysis and Section 3 presents estimation scheme and
experimental setup. Section 4 presents the experimental results and
discussions, and the conclusion of the paper is provided in Section 5.
2 Observability analysis

The local observability concept proposed by Hermann and Kerner
for non-linear dynamic systems is briefly discussed as follows [7]:
If a system S is locally observable at initial state x0, then in every
open neighbourhood U of x0 is distinguishable

IU (x0) = {x0} (1)

and therefore S is locally observable at every x [ M (M is universal
set). The system S is locally weakly observable if there exists a
neighbourhood V of x0 which is contained in the open
neighbourhood U in such a way that

IV (x0) = {x0} (2)

and for every x [ M . The benefit of local weak observability is that
it can be verified by a simple algebraic test [7]. The test is based on
the rank of O, Jacobian of the Lie derivative vector

O = ∂

∂x

L0f h
L1f h
· · ·

L(n−1)
f h

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (3)

where L(n−1)
f h is the Lie derivative of output vector h with respect to

system function f, and n is the dimension of state vector x. The size
of O is the size of h multiplied by (n− 1) times n. If the rank of O is
n, then the system is fully observable (locally weakly). It is laborious
to analyse the rank of a large matrix like O at different states. The
general practice is to choose a proper sub matrix [12–14].

2.1 IPM observability

The parameters vary in different degrees in an electric machine.
However, a slow variation is assumed for all the parameters in this
paper for the sake of simplicity in the mathematical formulation. It
O1 =

1 0 0
0 1 0

−Rs vLq − di

d

−vLd −Rs −vi

−R2
s − (vLd)

2 −Rsv(Ld + Lq) −2
d2id

dt2
Ld + v L

(

Rsv(Ld + Lq) R2
s − (vLq)

2 idRs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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is to be noted that, if a slow variation is observable, then it is most
likely observable for fast variation. The system of equations of an
IPM machine by considering slow parameter variations and
constant angular speed is given in (4) [12]. All four of the
parameters, consisting of d- and q-axis inductances (Ld and Lq),
phase resistance (Rs) and permanent magnet flux linkage (cm), are
considered varying in (4). The mutual inductances are not
explicitly modelled in this paper. However, its effect can be
observed from self-inductance as presented in the result section of
this paper

did
dt

= − Rs

Ld
id + v

Lq
Ld

iq +
1

Ld
vd

diq
dt

= −Rs

Lq
iq − v

Ld
Lq

id − vcm + 1

Lq
vq

dLd
dt

� 0

dLq
dt

� 0

dRs

dt
� 0

dcm

dt
� 0

(4)

To analyse the observability of the above non-linear system, the local
observability theorem needs to be applied. The first step is finding
the Jacobian matrix O given in (3). The system function (4)
represents f in (3). The state vector, x, is [id iq Ld Lq Rs cm]. The
output vector, h, is [id iq]. A detailed formulation of the Lie
derivatives and Jacobian matrix for estimation of electric machine
parameters is given in [13, 14].

This paper analyses non-linear observability for different
combinations of the parameters. The parameter combinations are
categorised into groups of two, three or four parameters. It should
be noted that all the four parameters are varying in (4). However,
for a combination, only the associated parameters are considered
varying and rest of them are assumed as constants.

Combination 1 only considers variation in Ld and Lq while
assuming Rs and cm as constants and therefore the state vector is,
x = [id iq Ld Lq]. The output vector (h) remains the same as the
system (4) and will be the same for all other combinations. The
Jacobain for this case is a 6× 4 matrix as given below: (see (5))

The rows from top to bottom correspond to derivatives of output
vector from zero to second orders, respectively. The columns from
left to right represent the variations in id , iq, Ld and Lq,
respectively. The rank requirement for the system to be fully
observable is four. However, as id and iq are measurements and
always observable, the columns corresponding to id and iq can be
eliminated from O1. Hence the rank requirement for the system to
observe all the parameters (Ld and Lq) becomes just two (number
of the estimating parameters). One of the proper sub matrices
which has the columns corresponding to variations in only Ld and
Lq with rank two is (see equation (6) at the bottom of he next page)
0
0

d

t
viq

d − diq

dt

q
diq

dt
− idLdv

)
iqRsv

v −2
d2iq

dt2
Lq + v −Ld

did

dt
− Lqiqv

( )

⎤
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(5)
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According to the rank of Os1, Ld and Lq can be estimated
simultaneously at steady state and even at v = 0. If id = 0 only Lq
can be estimated. However, it can be estimated even if the average
id = 0 while the derivative of id is not equal to zero. Similarly
with iq for the case of Lq. This means that with a PE both the
parameters can be estimated even when the average values of the
associated currents are zero which is a case in MPC-FCS.

The proper sub matrix of Jacobian matrix considering the
variations in only Rs and cm, where Ld and Lq as constants
(combination 2) is

Os2 =
idRs − Ld

did
dt

− vLdiq −v2Ld

iqRs − Lq
diq
dt

+ vLqid Rsv

⎡
⎢⎣

⎤
⎥⎦ (7)

The rows of Os2 correspond to second-order derivatives of id and iq,
respectively, and the columns represent the small variations in Rs and
cm. At steady state as long as id = 0 and v = 0 both Rs and cm can
be estimated. Only Rs is identifiable at v = 0. The columns of Os2
becomes linearly dependent when id = 0 that make it impossible
to estimate Rs and cm independently. Similar to the previous case,
even when the average of id is zero while its derivative is not zero,
both the parameters can be estimated simultaneously.

For the case of estimating Ld and cm by keeping Rs and Lq as
constants (combination 3), the proper sub matrix is

Os3 = −2
d2id
dt2

Ld + v Lq
diq
dt

− idLdv

( )
−v2Ld

idRsv Rsv

⎡
⎣

⎤
⎦ (8)

Similar to the previous combinations, the rows of Os3 correspond to
second-order derivatives of id and iq, respectively, but the columns
represent small variations in Ld and cm, respectively. The sub
matrix Os3 is rank deficient even at steady state unlike the
combinations 2 and 3. Therefore, the estimation of Ld and cm is
not at all possible unless there is a PE in the system.

The other possible two parameter combinations are Lq–cm
(combination 4), Ld–Rs (combination 5), and Lq–Rs (combination
6). The proper sub matrices of the combinations of 4 and 6 (not
presented here) are full rank at steady state and even at id = 0.
The combination 5 is fully observable at steady state as long as
id = 0.

The rank analysis of the combinations of three and four
parameters is presented in this paper by showing the proper sub
matrix of four parameter combination, Os4. Each column
corresponds to small variations in Rs, cm, Ld , and Lq, respectively,
and each row corresponds to first- and second-order derivatives of
id and iq, respectively. The columns corresponding to the
parameters in a combination is only considered for finding the rank

Os4 =
−id 0 − did

dt
viq

−iq −v −vid − diq
dt

[Os3] [Os2]

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (9)

The sub matrices of three parameter combinations are rank deficient
at steady state. The columns 3 and 4 together are linearly dependent
with column 1 for combination 7 (Ld–Lq–Rs). For combinations 8
and 9 (Ld–Lq–cm and Ld–Rs–cm), the columns 3 and 4 are
linearly dependent. The columns 2 and 4 together are linearly
dependent with column 1 for the combination 10 (Lq–Rs–cm). For
Os1 =
−2

d2id

dt2
Ld + v Lq

diq

dt
− idLdv

( )

idRsv

⎡
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combinations 9 and 10, the columns 1 and 2 are also linearly
dependent at id = 0. The rank deficiency conditions of all of the
three parameter combinations are also applicable to four parameter
combination that make it rank deficient at steady state.

The summary of theoretical observability analysis with and
without PE is presented in Table 1. The worst case operating states
are compared, which include steady state, steady state and id = 0,
and steady state and v = 0. The zero derivatives of id and iq are
defined as the steady state for the case without PE in this paper.
No change in average of ripple currents over a span of sampling
intervals is considered as steady state with PE. The estimation of
both the parameters in some of the two parameter combinations at
certain operating states without PE are rank deficient. The three
and four parameter combinations are not at all observable at all the
operating states without PE. These limitations on observability can
be overcome with PE except in the case of v = 0. The parameter
cm is not identifiable at v = 0 and persistent current excitation
cannot overcome this limitation.

All the theoretical results are validated for the reference IPM
machine by simulation with the help of Matlab Simulink. The
simulation without PE is carried out with field oriented control.
The model predictive control (MPC) with finite control set (FCS)
control is used for simulation with PE. It is shown that inherent
high frequency vector injection in MPC with FCS is sufficient to
create persistent current excitation. The simulation results are not
included as this paper tries to validate most of the theoretical
results by experiment.
3 Estimation scheme and experimental setup

The online estimation of different parameter combinations is realised
by an RLS estimator. The RLS updates the error between actual (y)
and estimated output (fnun−1) to the next estimated parameters (un)
by a factor of Kalman gain. The Kalman gain is a function of
covariance and forgetting factor. The forgetting factor decides the
amount of contribution of the previous samples to the covariance.
It plays a big role in the convergence accuracy and speed.
Different forgetting factors are used for the different parameter
combinations considered in this paper. The different combinations
also have different mathematical formulations for the RLS
estimator. The constant parameters and their coefficients in (4)
move to be the part of the output. The varying parameters and
their coefficients are formed as the product of measurement (f)
and the parameters (u). For example, the mathematical formulation
of RLS for combination 1 is

yn = fnun−1 (10)

where

yn =
vdn − idnRs

vqn − iqnRs − vcm

[ ]
;

fn =
(idn − id(n−1))/Ts viqn
(iqn − iq(n−1))/Ts −vidn

[ ] (11)

In (11), vdn, vqn, idn, and iqn stand for d- and q-axis voltages and
currents, respectively, at current sampling interval (n). The
variables id(n−1), and iq(n−1) represent d- and q-axis currents of the
previous sampling interval (n− 1), and Ts is the sampling period.
In this paper, the voltage samples are taken from the reference
values and the currents are taken from the measurements.
iqRsv

−2
d2iq

dt2
Lq + v −Ld

did

dt
− Lqiqv

( )
⎤
⎥⎥⎥⎦ (6)
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Table 1 The summary of observability results with and without PE

Combinations Steady state Steady state + id = 0 Steady state + v = 0

Without PE With PE Without PE With PE Without PE With PE

1, Ld − Lq
√ √ × √ √ √

2, Rs − cm
√ √ × √ × ×

3, Ld − cm × √ × √ × ×
4, Lq − cm

√ √ √ √ × ×
5, Ld − Rs

√ √ × √ √ √
6, Lq − Rs

√ √ √ √ √ √
7–10, 4C3 × √ × √ √a √a

11, Ld − Lq − Rs − cm × √ × √ × ×

a For the combinations without parameter cm
The software part of the experimental setup consists of mainly
MPC with FCS and an RLS estimator. The MPC with FCS
controls id and iq in this work. The cost function is the error
between the reference and predicted values of id and iq. The
prediction horizon is chosen as one. The MPC with FCS block in
Fig. 1a outputs the voltage vector corresponding to the minimum
cost function at each sampling time. The voltage vector is applied
to electric machine via the inverter.

The experimental test bench consists of industrial grade IM and
IPM machines configured back to back. The IM is driven by a
Yokogawa motor drive. An in-house manufactured SiC inverter
along with a DSpace Microautobox drives the IPM machine. The
MPC with FCS scheme along with the RLS estimator is
implemented in the Microautobox via Matlab Simulink. There are
two encoders connected to each motor and six current feedback
sensors to perform the field oriented control. A common DC bus
(300 V) is used to supply both the machines. Fig. 1b shows the
photo of the experimental setup. The control algorithm takes
measurements and runs the estimation algorithm at the sampling
rate of 10 kHz.

The reference IPM is a 5 kW, 1800 rpm machine with 28 Nm
rated torque. The phase resistance at 25°C is 0.4 Ω and the no
load permanent magnet flux linkage is 0.34 Wb. The nominal
values of d- and q-axis inductances are 11 and 14.6 mH,
respectively. The offline measured inductances for different id and
iq are shown in Fig. 2. The q-axis inductance decreases due to
saturation as iq increases and there is a considerable effect from
cross saturation by id current. On the other hand, the d-axis
inductance undergoes light cross saturation by iq current.
4 Experimental results and discussions

The experiments are carried out to validate the theoretical
observability results with PE presented in Section 2. The reason
this paper focusing on PE is because, MPC-FCS which is being
used always provides persistent current excitation even when the
Fig. 1 Experimental scheme and setup

a Block diagram of estimation with MPC with FCS
b Photo of experimental setup
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reference currents are zero. Furthermore, the different parameter
combinations are different in terms of parameter observability,
therefore, the experiments to estimate all the combinations are
conducted even though some of them are not important in some
practical cases.
4.1 Two parameter estimation

Combination 1 (Ld and Lq) is fully observable at steady state as long
as id = iq = 0 as mentioned in Section 2. However, the parameters
are observable for the case of MPC-FCS even when the average
id = iq = 0 as shown in Fig. 3a. The small current ripples by
vector injection are sufficient to make the system observable. The
d- and q-axis current ripples are shown in Figs. 3c and d,
respectively.

Combination 3 (Ld and cm) is not observable at steady state and
id = 0 without PE. The experimental results in Fig. 3b show that
the current ripples (PE) associated with MPC-FCS are sufficient to
overcome those limitations. The experiment is conducted when the
average value of id = 0. The estimated parameters closely match
with actual parameters.

The estimation of Rs and cm (combination 2) is not observable at
steady state when id = 0 without PE. The experimental results with
MPC-FCS in Fig. 4a show that the system becomes observable for
this case as there is a PE from current ripples. However, the
parameters converge to wrong values with large oscillations
especially for Rs. The current measurement noise and delays, and
inverter non-linearities associated with the experiments are
attributed to this behaviour. A small error in estimation of cm
results in a big error in Rs as they are tightly coupled by the q-axis
machine equation (4). This behaviour would not be noticeable if
the value of cm was much lower than Rs by an order of one as
verified by the simulation which is not presented here.

The coupling can be broken by keeping either iq = 0 or v = 0.
Fig. 4b shows the experimental results of estimating Rs and cm
with a very low speed (v = 25 rpm). The estimation is more
IET Electr. Power Appl., pp. 1–8
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Fig. 2 Offline measured inductances for different id and iq
a q axis inductance
b d axis inductance
accurate compared to Fig. 4a, however, there are still oscillations.
This is due to the fact that, the complete decoupling is not made
as v is not exactly zero, which is not possible as long as
estimating cm. The complete decoupling can be achieved by
keeping iq = 0. The experimental results for the case with iq = 0
are shown Fig. 4c. The parameters converged to the actual values.
Decoupling by keeping iq = 0 or v = 0 is not practically possible
in the case of motor operation. Therefore, a decoupling technique
is proposed in this paper.
4.2 Decoupling technique

A small variation in cm creates a huge variation in Rs due to
coupling. One way to overcome this coupling is to make the
estimation of cm insensitive to small variations by slowing down
the convergence. It can be done by tuning the corresponding RLS
Fig. 3 Experimental results

a Ld–Lq estimation (combination 1)
b Ld–cm estimation (combination 3)
c Average id = 0
d Average iq = 0
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forgetting factor. However, to get a reasonable steady estimation,
the convergence is unreasonably slower.

The proposed decoupling technique in this paper separates
estimation of Rs and cm by two moderately fast RLSs (RLSs 1
and 2, respectively) as shown in Fig. 5a. The sampling rates of the
two RLSs are kept high to avoid discretisation error due to low
sampling rate (same as the main control algorithm, 10 kHz). The
value of Rs updates to RLS 2 at each sampling time providing a
direct link. On the other hand, RLS 2 starts the estimation of cm
with a prior known initial value. It updates to RLS 1 only when
there is a considerable change (weak link). In this way, the small
error in cm estimation does not pass to Rs estimator while keeping
the track of it.

The estimation of Rs and cm (combination 2) is improved with
decoupling technique as shown in Fig. 5b. The convergence of cm
is steady and accurate. There are still small oscillations in Rs. It
can be further improved by tuning the RLS and the band of cm
5



Fig. 4 Experimental results of Rs and cm estimation (combination 2)

a For iq = 5A, id = 0A, and 100 rpm
b For iq = 5A, id = 0A, and 25 rpm
c For iq = 0A, id = −5A, and 100 rpm
d Measured id and iq for the case c
which decides whether to update RLS1 or not. Combination 2 only
needs the decoupling among the two parameter combinations. The
experimental results of combinations 4–6 are not presented in this
paper as the convergence limitations are already demonstrated by
the other three combinations.
4.3 Three parameter estimation

The three parameter combinations (7–10) are rank deficient at worst
case operating states without PE as shown in Table 1. The parameter
coupling also creates additional concern for some of the
combinations. Combinations 7 and 8 do not need decoupling as Rs
and cm are not estimated simultaneously. The known constant
values of Rs and cm are provided, respectively, for combinations 7
and 8. The decoupling technique is applied for combinations 9 and
10. The parameter cm is estimated separately by one RLS and the
other two parameters are estimated by a second RLS.

The experimental results in Fig. 6 show that all the three parameter
combinations converge to correct values with PE created by MPC
with FCS. The average id is kept as zero in all the four cases (the
worst case). There are small oscillations in Rs in combinations 9
Fig. 5 Decoupling technique

a Two RLS configuration
b Experimental results of estimation Rs and cm estimation (combination 2) at iq = 5A and 10

6

and 10 which use decoupling technique similar to the case of
combination 2. This can be improved by tuning RLS and band of
cm updater as mentioned before.
4.4 Four parameter estimation

The four parameter estimation with decoupling is realised by two
RLSs. The first RLS estimates Ld , Lq, and Rs and the second one
estimates cm. The experiments are carried out at 50, 100, and 150
rpms. The iq current is varied from 5 A with a step of 2 A until
11 A while keeping id = 0A. The estimation results are shown in
Fig. 7. The estimation of parameter cm is steady and does not
change with current and speed as expected. The parameter Lq
decreases with increase in iq due to saturation. The slight decrease
in Ld is due to the cross saturation by iq. Both Ld and Lq
estimations follow the actual values. The parameter Rs is slightly
over estimated at 50 rpm and becomes closer to the actual value at
100 rpm irrespective of the values of iq. It is slightly under
estimated at 150 rpm.

The experimental results show that the limitations on
observability associated with all the parameter combinations can
0 rpm

IET Electr. Power Appl., pp. 1–8
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Fig. 6 Experimental results of three parameter estimations at iq = 5A, id = 0A, and 100 rpm

a Combination 7 (Ld − Lq − Rs)
b Combination 8 (Ld − Lq − cm)
c Combination 9 (Ld − Rs − cm)
d Combination 10 (Lq − Rs − cm)

Fig. 7 Experimental results

a Estimation of combination 11 (Ld − Lq − Rs − cm)
b Corresponding id , iq and rpm
be overcome by persistent current excitation by MPC-FCS. So,
one can choose any of the parameter combination based on the
application as long as there is a PE. Not all the parameter
combinations which are analysed in this paper have practical
applicability. The four parameters are required to estimate for
model-based control even though there is a position sensor. For
example, the accuracy of torque prediction is dependent upon on
the four parameters for direct torque control. MPC also needs
the four parameters to accurately predict future control outputs.
IET Electr. Power Appl., pp. 1–8
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Similarly, all the four parameters are required for high speed
sensorless control. The estimation of d- and q-axis inductances
is required for accurately compensating cross coupling effects in
linear control. The winding and magnet temperatures can be
tracked by estimating winding resistance and permanent magnet
flux linkage, respectively. Similarly, there are many more
practical applications, however, this paper does not restrict the
observability analysis to a certain application. It rather presents
the observability in general for all of the parameter combinations.
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5 Conclusion

This paper investigates the observability conditions to estimates the
electrical parameters of an IPM machine with MPC-FCS. The
observability of the system is different for different parameter
combinations. This paper categorises the combinations into groups
of two, three and four parameters. It is shown that some of the
two parameter combinations are rank deficient without PE at
steady state and id = 0 (the worst cases). All the three and four
parameter combinations are rank deficient at the worst-case
operating states. This paper proves experimentally that the current
ripples created by inherent high frequency vector injection of MPC
with FCS are sufficient to generate PE to overcome the limitations
on observability. The parameter coupling which results in wrong
convergence in estimation is analysed and a decoupling technique
is proposed. Finally, the full parameter estimation with decoupling
technique is validated experimentally at different operation points.
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