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Abstract—Electric vehicles (EVs) have rapidly grown in pop-
ularity, and the number of inverter-based EV chargers increases
promptly due to their high efficiency and capabilities of providing
grid services. EV and other distributed energy resources (DER)
would become a crucial part of the resilience and performance of
the microgrid. Optimizing the EV-interfaced microgrid is chal-
lenging due to the non-linearity and uncertainty. In this paper, we
propose a method based on deep reinforcement learning (DRL)
with Twin Delayed Deep Deterministic Policy Gradients (TD3)
to optimize the microgrid. The proposed method can be used to
optimize different objectives. An example objective of stabilizing
the voltage fluctuations in a power system modified from the
IEEE 30-bus system is presented. The proposed system can
provide grid service policies for reactive power control according
to the requirements specified in the IEEE 1547 standard. This
model-free DRL approach can be adapted to other microgrid
systems.

I. INTRODUCTION

The rapid and deep penetration of distributed energy re-
sources (DER) technologies, especially the electric vehicles
(EVs) and the related inverter-based DER, has become more
critical to the reliability and resilience of the microgrid. DC
fast chargers have gained increasing popularity due to their
high efficiency. The power controller within the charger is able
to receive the grid service reference command to compensate
for grid voltage/frequency fluctuations [1]–[3]. The IEEE Stan-
dard 1547 interconnects the DER with the grid by specifying
the requirements relevant to performance, safety, and the main-
tenance of interconnection [4]. Recently, deep reinforcement
learning (DRL) has been used as an advanced tool to solve
complex optimal power flow and grid optimization problems
due to its ability to make the decision in dynamic environ-
ments using an unsupervised approach [5], [6]. This paper
proposes a DRL-based approach to optimize the microgrid
and provide IEEE 1547-specified grid services implementation
policies. The case study of optimizing the voltage fluctuation
of a modified IEEE 30 bus system is demonstrated. The
optimization results and evaluation show the effectiveness
of the proposed DRL-based optimization approach with the
Twin Delayed Deep Deterministic Policy Gradients (TD3)
as agents to optimize the EV-interfaced microgrid under the
IEEE 1547-specified grid service requirements. An online-
updating architecture is demonstrated as the suggestion to use
the proposed method in a real-world scenario. Our proposed
approach can also be extended to optimize the performance

Figure 1: The network topology of the IEEE 30-bus system
with all the load buses being capable of providing the IEEE-
1547 specified grid services.

of EV-interfaced microgrid, contribute to the Optimal Power
Flow (OPF) problems, as well as manage the DC charger
implementation strategies and EV dispatches.

II. METHOD

A. Grid Structure

We consider an electric grid structure adapted from the
IEEE 30-bus system, as shown in Figure 1, which consists of
30 buses, 1 slack node, 5 generators, 2 shunts, 42 transmission
lines, and 20 loads. Each load represents a group of DER,
including EVs and EV chargers, that could provide the IEEE
1547-specified grid services. To simulate the real-world hourly
load changes on the 20 buses with load connected in the IEEE
30-bus system, 20 one-year load profiles from commercial,
residential, and industrial buildings in Typical Meteorological
Year 3 (TMY3) locations are used as the basis to modify the
grid states [7]. The structure and bus information is obtained
from pandapower [8].

B. IEEE 1547 Grid Services

The grid services following the IEEE 1547 standard mainly
include six working modes [9]:

1) voltage-reactive power (Volt-Var) mode;
2) active-reactive power (Watt-Var) mode;
3) constant reactive power (Const-Var) mode;
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Figure 2: Volt-Var curve.

4) constant power factor (Const-PF) mode;
5) frequency-active power (Freq-Watt) mode;
6) voltage-active power (Volt-Watt) mode.

Considering the specifications in Annex B of IEEE 1547, the
inverter-based DER is usually assigned as Category B DER,
while synchronous machine generations belong to Category A
DER [10]. This paper focuses on exploring the implementation
policy of the reactive power control modes (Const-Var, Volt-
Var, and Watt-Var) with Category B DER requirements since
the chargers are able to conduct reactive power control with
or without the EVs connected.

Specifically, the Const-Var mode targets at maintaining a
constant injection or absorption of reactive power. The Volt-
Var mode aims at adjusting reactive power to compensate for
the voltage variation based on a piece-wise Volt-Var power
response curve as shown in Figure 2. The definitions of the
critical points are also denoted in the figure, where VN is the
nominal voltage, SN is the nominal apparent power, and VRef
equals to the reference voltage (low pass filtered measured
voltage). In the Watt-Var mode, the reactive power shall be
governed by active power absorption or injection based on the
predefined response curve as shown in Figure 3 in Watt-Var
mode. Prated and P

′

rated respectively denote the maximum active
power can be injected and absorbed of the DER, while Pmin
and P

′

min respectively denote the minimum active power that
can be injected and absorbed of the DER [11].

C. Deep Reinforcement Learning Based System Pipeline

1) Optimal Power Flow (OPF) Formulation: The environ-
ment to generate the rewards and define next step for the DRL
is based on the AC power flow model. We use G = (V,E)
to denote the power grid topology, where V = {1, 2, · · · , N}
represents the N buses and E = {e1, e2, · · · , eM} represents
the M transmission lines. The characteristics of a transmission
line are determined by its admittance value: yij = gij + jbij ,
where condutance and suspectance are denoted by gij ∈ G
and bij ∈ B, respectively. The active power, pi, and reactive

Figure 3: Watt-Var curve.

power, qi, at bus i can be written as:

pi = −
∑
l∈V i

|vi| · |vl| · (gil cos(θi − θl) + bil sin(θi − θl)), (1)

qi = −
∑
l∈V i

|vi| · |vl| · (gil sin(θi − θl)− bil cos(θi − θl)), (2)

where V i is the set of buses directly connected by edges to
bus i, |vi| is the magnitude of the voltage at bus i, and θi is
the phase angle at bus i.

The proposed DRL-based optimization approach for OPF
problem can be utilized for different objectives, such as
minimizing the generation cost or transmission loss. For the
example case investigated in this work, the objective of DRL-
based OPF is to stabilize the grid voltage variation on all buses
while satisfying the grid operational constraints:

min

N∑
i=1

|vi| − |vref,i|, (3)

s.t., grid operational constraints.

The objective function in Eq. (4) can be modified for other
grid optimization purposes, such as minimizing the power
loss on the transmission lines.

2) System Pipeline: Markov Decision Process (MDP) is
usually used as the mathematical framework to describe an
environment in the DRL problems. Our considered OPF
problem can be modeled as an MDP with finite time steps
containing four parts: ⟨S,A, P,R⟩. In particular, S represents
the set of states, which is composed of the active power pk and
reactive power qk at the bus k that connects with DER (loads).
The action set A = [∆q1, · · · ,∆qk] contains the incremental
adjustment of reactive power injections (step-wise adjustment).
P represents the transition probability to the next state, which
is complex and strongly depends on the grid response modeled
by the AC power flows, and the objective stated in Eq. (4).
To address those issues, a model-free DRL-based approach is
used to learn the transition procedure. R denotes the reward
after an action is taken in a state.

Figure 4 shows the system pipeline to minimize the voltage
variation on every bus in the microgrid, which uses the TD3
method as the RL agent. TD3 learns a deterministic policy
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Figure 4: System pipeline for generating grid services policies by optimizing the microgrid using a DRL-based approach. (The
blue arrows indicate the direction of parameter updates for the neural networks, and the red star represents the place to add
noise during the training process to prevent overfitting.)

in an environment with continuous state and action spaces
and is based on actor-critic algorithm [12]. The actor neural
network (NN) is the policy function that maps state to action,
while the critic NN maps the state to a scalar Q value that
measures the quality of the input state. The characteristics of
the grid, the OPF, and the load profiles are included in the
environment, which is used to provide the grid information
to calculate reward and derive the next state. The constraints
of the three grid services modes mentioned before will be
implemented in the environment in Figure 4.

Three DRL models are trained for the three reactive power
grid service modes based on the IEEE 1547 requirements il-
lustrated in Section II-B. The trained network can generate the
optimal reactive power qk,Optimal on each bus that has DER
connected. With qk,Optimal, the resulting stabilized voltage
vi,optimal can be derived. With that information, considering
the real-world feasibility, the microgrid operator is able to
decide which mode to follow and how much reactive power
needs to be injected or absorbed at each bus with DER. The
operator could also generate the grid service commands to the
DER.

3) Training Reward and Grid Service Constraints: The
limits of the voltage variation are [vLower, vUpper], which
should be set by the grid operator according to the demand.
For each epoch in every training episode, the environment
based on the AC power flow equations is able to calculate the
grid parameters (vi, pi, qi, and θi) on every bus. The nominal
reactive power of each DER is qref,k A single-step reward R

is empirically defined as:

Di = max (v2Lower − v2i , v
2
i − v2Upper, 0), (4)

R = C − 10−8
N∑
i=0

(qk − qref,k)
2 − 10−3

K∑
i=0

Di. (5)

For each epoch in every training episode, the grid service
constraints are added after executing the step-wise adjustment
action. The constrained results will be used to calculate the
reward. For each training episode, the episode ends when the
single-step reward is larger than 0 or the calculated voltage for
each bus falls within the predefined range [vLower, vUpper].
The training process ends when the number of total steps in
all episodes exceeds a certain amount (a value that depends
on the complexity of the grid).

III. RESULTS AND IMPLEMENTATION

In this section, the performance of the proposed DRL-based
method with TD3 is compared with other DRL agents, Deep
Deterministic Policy Gradient (DDPG) and Deep Q Network
(DQN). Specifically, DQN contains two Q-networks (a local
NN and a target NN). While DQN is just a value-based
learning method, DDPG is an actor-critic method with four
NNs (2 actor NNs and critic NNs). In addition, TD3 learns two
Q-functions and adds delays to update the policy to prevent
the overestimation issues commonly happening with DDPG.
As the agents, DDPG and DQN use the same environment
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with continuous action spaces as the proposed method with
TD3. In addition, an online-updating architecture is discussed
to illustrate how the proposed method could be used in real-
world scenarios.

A. Experimental Setup

Modified from the IEEE-30 bus case from pandapower,
there are N = 30 buses and K = 20 DER. The nominal
reactive power of DER are adjusted to represent a timestamp
from the load profile where the voltage values on the 30
buses are not entirely scattered around the reference voltage
vref,i = 1,∀i ∈ N , as shown by the black dots in Figure 6.
The lower and upper bounds are set to be [vLower, vUpper] =
[0.975 p.u., 1.25 p.u.]. The training process terminates when
the total number of epochs in all episodes reaches 100, 000.
The parameters used in the IEEE-1547 grid service VN , SN ,
Prated, and P ′

rated are set to be 1 p.u., 43MVA, −40MW ,
and 40MW , respectively.

B. Training Results and Evaluation

The average reward curves for all epochs in each episode
of Constant-Var, Volt-Var, and Watt-Var modes using the three
algorithms are plotted in Figure 5. As shown in Figure 5,
the agent cannot make good decisions at the beginning of
the training process and needs to explore larger action spaces
to achieve more information in each state. The agent finally
learns the optimal policy by continuously interacting with the
environment. The fluctuations in Figure 5 are caused by the
noise added in the training process. Comparing the overall
results in Figures 5(a), 5(b), and 5(c), TD3 and DDPG have
significantly higher training rewards than DQN, while TD3
has slightly higher rewards than DDPG in the three reactive
power grid services modes. In addition, comparing the training
rewards for Constant-Var mode in Figures 5(a) and 5(b),
DDPG has the problem being stuck at a local minimum.

Figure 6 illustrates the voltage before and after the three
DRL optimization methods, where black, blue, red, and green
dots represent the voltages without optimization, with Watt-
Var mode, with Volt-Var mode, and with Constant-Var mode,
respectively. Comparing Figures 6(a), 6(b), and 6(c), TD3
and DDPG perform better than DQN to learn the reactive
power policy on each DER under different grid service modes
to stabilize the voltage. Before implementing any DRL op-
timization, only 16 out of 30 buses are with the voltages
in the predefined range. Table I shows the number of bus
voltages that fall within [0.975 p.u. and 1.25 p.u.] using the
proposed method, DDPG method, and DQN method under
three reactive power control modes specified by IEEE-1547. In
addition, with the IEEE-30 bus topology and the example load
information used in this paper, Watt-Var mode performs better
in minimizing the fluctuations on every bus in the system.
With different topology and load information from a different
time stamp, another reactive power control mode may have
the best performance for the optimization objective in Eq. (4).

Figure 7 presents the reactive power on each bus after
adapting the reactive power policies under different modes and

(a) Training Reward with TD3

(b) Training Reward with DDPG

(c) Training Reward with DQN

Figure 5: The average training reward for all steps in each
episode using TD3, DDPG, and DQN for Constant-Var, Volt-
Var, and Watt-Var modes. (Green line: Constant-Var; Blue line:
Watt-Var; Red line: Volt-Var.)

using different DRL optimization methods on the 20 buses
that connect with DERs. In general, the proposed TD3-based
DRL optimization method has the best performance among
the three DRL approaches. DQN-based method performs poor
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(a) Voltage Comparison with TD3

(b) Voltage Comparison with DDPG

(c) Voltage Comparison with DQN

Figure 6: The voltage optimization results on each bus
for Constant-Var, Volt-Var, and Watt-Var modes using TD3,
DDPG, and DQN. (Black dots: original voltage before opti-
mization; Green dots: Constant-Var; Blue dots: Watt-Var; Red
dots: Volt-Var.)

with continuous action spaces, and DDPG approach has the
problem of overestimation on Q-value and overfitting.

Table I: Number of buses with voltage within the predefined
range under three DRL methods and three grid service modes.

DRL Methods Constant-Var Volt-Var Watt-Var
TD3 25 24 27
DDPG 24 24 27
DQN 16 17 20

C. Online Update and Grid Services Implementation

As mentioned above, although the proposed DRL-based
optimization method with TD3 as the agent performs well
under different IEEE-1547 specified reactive power control
modes, the specific mode that best optimizes the objective
function highly depends on the current load information and
grid topology. In addition, as the proposed DRL method has
continuous action spaces, the TD3 agent will perform better
after observing more conditions. Thus, we suggest an online-
updating architecture to use the proposed method in the actual
application scenarios shown in Figure 8.

Specifically, historical data, which contains the load profile
information from previous timestamps, can be used to generate
the pre-trained models for Constant-Var, Volt-Var, and Watt-
Var modes. The pre-trained models will serve as the operating
models to provide optimization results and suggestions for grid
service policies in a short time. When the grid operators need
to come up with grid service commands with the current load
profile, the current load profile can be directly used as the input
for the pre-trained operating models as well as saved into the
historical data. The historical data will be updated with new
load profile information and utilized to train local grid services
models. The local grid services DRL-based models using TD3
behave as the twins for the operating models with the same
architecture. Every time when the local models finish training,
the parameters can be passed to the operating models. With
the online updating techniques, the operating models can keep
improving their performance after meeting more load profiles.
The output optimization results from the operating models
can provide suggestions to the grid operators to generate the
grid service commands to the DER. After the grid service
commands are sent and implemented by the DER, the input
load profile will change accordingly.

IV. CONCLUSION

This paper proposes a method based on DRL with the TD3
algorithm to optimize the EV-interfaced microgrid considering
the IEEE 1547-specified grid services requirements. The IEEE
30-bus is adopted as the microgrid structure in this work,
where 20 out of 30 buses have EVs and EV chargers (DER)
connected to the loads. The EV chargers are capable of imple-
menting reactive control grid services. The voltage variation on
each bus is regulated by implementing reactive power control
policies generated by the DRL-based system. This model-free
DRL-based approach is scalable to complex grid structures
that might be challenging analyze using traditional approaches.
It is also able to learn and generate the grid service policies
for other objectives, such as minimizing the power loss in
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(a) Reactive Power Comparison with TD3

(b) Reactive Power Comparison with DDPG

(c) Reactive Power Comparison with DQN

Figure 7: The resulting reactive power of each bus after being
optimized by TD3, DDPG, and DQN for Constant-Var, Volt-
Var, and Watt-Var modes. (Black dots: original voltage before
optimization; Green dots: Constant-Var; Blue dots: Watt-Var;
Red dots: Volt-Var.)

the microgrid. An online-updating architecture is shown to
demonstrate how to efficiently use the proposed method in
real-world scenarios to operate the grid. The proposed method

Figure 8: The architecture for online update for one grid
structure in real application scenarios.

can optimize the performance of EV-interfaced microgrid
and provide grid service commands suggestions to the grid
operator. It also has the potential to offer insights into EV
charging scheduling and EV charger implementation.
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