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Abstract

A battery equivalent circuit model (ECM) is proposed using a novel physics-based diffusion component
and N resistor-capacitor (RC) pairs, hence its name the ‘DNRC model’. The DNRC model characterizes
ohmic, charge transfer, and diffusion overpotentials in the time domain with physically-meaningful circuit
elements. Unlike the Warburg impedance, the diffusion component has no need for frequency-domain data
and is formulated entirely in the time domain. Physical interpretability is validated by comparison with
physics-based model (PBM) generated data. Experimental validation is performed at a wide range of state
of charge (SoC) and state of health (SoH) using pulse injection and drive cycle data. The mean absolute
percent error is below 0.3% using 5 circuit elements for 4 minutes of an arbitrary current load. The DNRC
model is grounded in physical principles, suitable for real-time estimation, and may form the basis for new
approaches to degradation reduction or diagnosis in battery management systems.
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1. Introduction

Lithium-ion batteries (LIB) are becoming in-
creasingly popular for energy storage in applica-
tions such as electric vehicles [1]. LIB systems
are typically controlled with a battery management
system (BMS), which monitors and estimates the
cell states to ensure safe and efficient operation.
Knowledge of states such as state of charge (SoC)
and state of health (SoH) is crucial for reliabil-
ity, and can also inform more effective BMS pro-
tocols to increase pack power output and useful
lifetime [2, 3, 4]. In most LIB systems, temper-
ature, current, and voltage are the only measure-
ments available. This means that there is no di-
rect knowledge of how the cells’ internal chemistry
changes with degradation or usage. Battery mod-
els therefore form the basis of most conventional
BMS, and are used for state estimation [5]. Models
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must use limited observations to deduce changes in
the battery system. There are three types of mod-
els: physics-based models (PBM), equivalent circuit
models (ECM), and data-driven models.

Broadly, there are 4 criteria for models: gener-
ality, accuracy, interpretability, and speed. Mod-
els with high generality can easily adapt to differ-
ent cell chemistries. Accuracy refers to the voltage
tracking from inputs such as current and temper-
ature. Interpretable models have parameters that
are highly correlated with internal cell parameters,
and are thus particularly useful for tracking degra-
dation in cells. Understanding how a cell degrades
as a function of usage is important for optimizing
performance and increasing useful lifetime [6, 7].
For real-time use, models with fast parameter iden-
tification and voltage prediction are desired.

PBM are derived directly from physical principles
governing the electrochemical processes occurring
in battery cells. Due to the complexity of battery
cells, PBM are typically composed of more than
50 parameters, which may not be known in non-
laboratory environments, and are governed by nu-
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merous coupled partial differential equations. This
makes PBM estimation very time-consuming. PBM
are very accurate, however, and the parameters are
fully interpretable because they are linked directly
to the cell structure and chemistry. Because of this,
PBM can be used to gain insight to degradation
processes in the cell. Reduced-order PBM have at-
tracted attention for their faster estimation time
[8, 9, 10], but still require knowledge of internal cell
parameters, making the models difficult to general-
ize for different cell chemistries.

Conventional ECM are typically composed of an
ideal voltage source connected to passive circuit ele-
ments such as resistors and capacitors. The N th or-
der RC-pair (NRC) model is commonly used, shown
in Figure 1b, where VOC represents the open-circuit
voltage (OCV) of the cell and Vo is terminal volt-
age. Resistance R0 represents the ohmic resistance
of the cell. Each RC-pair has a characteristic time-
constant to capture time-varying phenomena in the
cell. Since an infinite number of RC-pairs can be in-
cluded in the model, the output voltage prediction
accuracy is very high, and can be applied to any
cell chemistry. ECM parameters can be estimated
and simulated very quickly. ECM, however, suffer
from poor interpretability. When several RC-pairs
are included in the model, the numerous circuit el-
ements have little to no physical meaning. This
means that a highly-accurate ECM may not yield
any information on the internal cell parameters.

Data-driven models are not as widely used as
PBM or ECM, but have potential to provide highly
fast and accurate predictions [11, 12]. Data-driven
methods include neural networks or support vector
machines, which can model complex systems when
trained and validated with large datasets. They
have no interpretability, and are considered black-
box systems.

Real-time battery models typically use time-
domain data, but the frequency domain offers an-
other perspective in the form of electrochemical
impedance spectroscopy (EIS). EIS is a popular
laboratory technique for analyzing cell states and
degradation [13, 14, 15]. This is partially because
of its ability to capture electrochemical processes
using a simple ECM such as the Randles circuit
[16], shown in Figure 1c, where W refers to the
Warburg impedance and Warburg coefficient AW .
Whilst electrochemically-based ECM like the Ran-
dles circuit do not represent internal cell parame-
ters, they are interpretable, and can offer insight
into internal processes such as diffusion.

EIS is a time-consuming but valuable technique
for insight into internal cell processes. Thus sev-
eral studies have pursued fast time-domain iden-
tification of circuit models typically formulated in
the frequency domain [17, 18, 19, 20, 21, 22]. In
[17, 18, 19], fractional-order system identification
methods are presented. Fractional-order systems
refer to the common-phase element (CPE), which
yields a fractional order transfer-function. This has
been shown to accurately model LIB behavior [23].
CPE models are a promising basis for state estima-
tion and degradation analysis [19], but face chal-
lenges in system order identification due to its vari-
ation with cell states. In [20, 21, 22], physically-
meaningful ECM are formulated. These ECM in-
clude a unique time-domain description of diffusion
derived from physical principles. While promising,
the models face challenges in accuracy and inter-
pretability.

1.1. Contributions and Outline

This article proposes a new general-purpose
ECM, named the DNRC model, that captures elec-
trochemical overpotentials including diffusion in the
time domain. A novel diffusion element is derived
from physics-based principles. The model is formu-
lated in discrete-time, allowing for fast estimation.
The DNRC model therefore increases the physical
interpretability of conventional ECMs without sac-
rificing accuracy or speed.

Model validation is performed using three dis-
tinct datasets: (1) Simulated pulse data using a
PBM, (2) Experimental pulse injection data for a
wide range of SoC and SoH, and (3) Experimental
drive cycle data. The simulated data demonstrates
the ability of the DNRC model to capture and iso-
late the effects of internal cell states such as diffusiv-
ity, reaction constant, and contact resistance. The
experimental data demonstrates that the proposed
model is general-purpose, accurate, and fast.

In Section 2, the model is formulated and derived.
In Section 3, data processing is described. The sim-
ulated and experimental datasets are analyzed and
discussed in Sections 4 and Section 5. The article
is then concluded in Section 6.

2. Model description

The proposed model is represented in Figure 1a,
with output voltage Vo given by

Vo(t) = VOC(t)− Vs(t)− Vct(t)− VD(t) (1)
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Figure 1: Comparison between the proposed and commonly-used equivalent circuit models, with (a) Proposed D2RC circuit
model, (b) Nth order RC-pair circuit model, (c) Randles circuit model for electrochemical impedance spectroscopy, and (d)
Summary diagram of electrochemical overpotentials and characteristic frequencies

where VOC is the OCV, and Vs, Vct, and VD are the
solution, charge transfer, and diffusion overpoten-
tials. The model is referred to as the DNRC model
because it combines the elements of a conventional
NRC model with a newly-proposed diffusion ele-
ment. It is renamed after the number of RC-pairs
included, e.g., D1RC for 1 pair or D2RC for 2 pairs.
Each labelled voltage is linked to an electrochemical
overpotential, and each is described in this section.
A summary diagram of the overpotentials is pre-
sented in Figure 1d. The discrete-time expression
is formulated using sampling interval ∆t and time
step tk, with initial conditions from rest.

2.1. Open-circuit voltage

The OCV, represented is the terminal voltage
of the battery cell Vo after sufficient rest. The
OCV is known to vary significantly with SoC and
slightly with SoH. OCV is estimated directly from
the cell current, with no fitting parameters. There
are many approaches to OCV estimation, as de-
tailed in [24, 25, 26]. In this article, VOC is obtained
with a simple recursive definition,

VOC(tk+1) =

(
∂VOC
∂SoC

∣∣∣∣
SoC(tk)

)
i(tk)η∆t

Qm
+ VOC(tk)

(2)
where ∂VOC

∂SoC is calculated offline, i is the cell current,
η is the coulombic efficiency, ∆t = tk+1 − tk is the
sampling interval, andQm is the maximum capacity
of the cell.

2.2. Solution overpotential

The solution overpotential, represented by Vs, is
the ohmic voltage developed across the electrodes,
electrolyte, and contacts. Typically Vs captures
high-frequency behavior in the cell above 100 Hz.
It is modelled using a resistor and an inductor, and
governed by the equation

Vs(t) = R0i(t) + L
di

dt
(3)

where i(t) is the cell current, R0 is a series resis-
tance, and L is an inductor.

Using zero-order hold (ZOH) discretization, we
have

Vs(tk+1) =
R0

(
i(tk+1)− i(tk)e−

∆tR0
L

)
1− e−

∆tR0
L

(4)

Note that it is inappropriate to include the inductor
when the data sampling frequency is below 100 Hz.
This is because its effects are not observed at lower
sampling frequencies. When this is the case, we
approximate L→ 0, so we have

Vs(tk) = R0i(tk) (5)

2.3. Charge-transfer overpotential

The charge-transfer overpotential, represented by
Vct, models overpotentials from multiple phenom-
ena in the cell that act from 1 to 100 Hz. The
RC-pairs are related to the double-layer capacitance
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and charge migration at the electrodes and at the
solid-electrolyte interphase (SEI) layer. Each RC-
pair is governed by the equation

i(t) = iRn(t) +RnCn
diRn
dt

(6)

where iRn is the current through the resistor Rn,
and Cn is the capacitance.

Using ZOH, the discrete-time form is given by

iRn(tk+1) = iRn(tk)e−
∆t

RnCn + i(tk)
(

1− e−
∆t

RnCn

)
(7)

Thus voltage Vct is given by

Vct(tk) =

N∑
n=1

RniRn(tk) (8)

where N = 2 for the D2RC model. Note that Vs
and Vct are the basis of conventional NRC models.

2.4. Diffusion overpotential

The diffusion overpotential VD models the volt-
age generated by the transport of Li-ions from con-
centration gradients in the cell, which is observed
at low frequencies under 1 Hz. Stress-induced diffu-
sion, though important, is assumed to be negligible
compared to concentration gradients [27, 28]. Volt-
age VD is derived assuming semi-infinite diffusion
for a solid electrode [29]. Electrode structure ef-
fects are not considered. Fick’s law for diffusion is
then given by

∂cs
∂t

=
D

x

∂

∂x

(
x2
∂cs
∂x

)
(9)

where cs and D are the concentration and diffusion
coefficient of lithium in the active material and x is
a length vector across the electrode. Note that x =
0 represents the electrolyte-electrode interface and
x = L represents the electrode-collector interface.

We first consider diffusion overpotential from a
single current step. Using the conditions

cs(x, t = 0) = cs,0

∂cs
∂x

∣∣∣∣
x=L

= 0

D
∂cs
∂x

∣∣∣∣
x=0

=
∆I

qeS

(10)

and assuming that tD << L2

D , it is shown in [29]
that

dcs(x = 0, t)

d
√
t

=
2∆I

qeS
√
Dπ

(11)

governs behavior over a single current step, where
cs,0 is the initial concentration, assumed constant
across the electrode, ∆I is the value of the current
step, tD is the step duration, S is the active sur-
face area of the electrode, and qe is the elementary
charge. Concentration is proportional to change in
the relative stoichiometry of lithium in the electrode
δ,

dcs =
NA
vM

dδ (12)

which is then used to obtain the diffusion overpo-
tential ηD using

dηD

d
√
t

dδ

dηD
=

2∆IvM

SF
√
Dπ

(13)

where vM is the molar volume of active material, F
is Faraday’s constant, and NA is Avogadro’s num-
ber. It can be shown that

dηD
dδ

= β
∂VOC
∂SoC

(14)

where dηD
dδ quantifies the change in overpotential

due to the the amount of stoichiometric added
lithium, ∂VOC

∂SoC is the derivative of the OCV-SoC
curve, and β is a conversion factor. Thus the vari-
ation of diffusion overpotential over time from a
single current step is given by

dηD

d
√
t

=
2β∆IvM

SF
√
Dπ

∂VOC
∂SoC

ηD =
(2β∆IvM

SF
√
Dπ

∂VOC
∂SoC

)√
t

(15)

Defining

AD =
2βvM

SF
√
Dπ

(16)

we thus have

ηD = AD∆I

(
∂VOC
∂SoC

)√
t (17)

where AD is a diffusion-related constant for the cell
at steady state.

To generalize this relationship for any number
of current steps Np, we introduce a diffusion state
function ψn(t) for the nth step change, given by

ψn(t) = ∆In

(
∂VOC
∂SoC

∣∣∣∣
SoC(tn)

)√
t− tn (18)

where ∆In is the value of the step change, tn is the
time of the step change, and t ≥ tn. The overall
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diffusion voltage is given by the superposition of all
ψn(t),

VD(t) = AD

Np∑
n=1

ψn(t) (19)

This shows that the voltage response at any time is
composed of the superposition of all diffusion states
from previous current steps.

For discretization, we consider the derivative

d
√
t− tn
dt

=
1

2
√
t− tn

(20)

By ZOH conditions, the discrete-time function is
therefore given by

ψn(tk+1) = ∆In

(
∂VOC

∂SoC

∣∣∣∣
SoC(tn)

)√
H(tk − tn)

(
∆t+ ψ2

n(tk)
)

(21)
where H is the Heaviside step function.

2.5. Relation to EIS

The D2RC model bears notable similarities to the
Randles circuit in Figure 1b. The impedance of W
is given by

Vw(s)

Iw(s)
=
AW√
s

(22)

where Vw is the voltage across W , Iw is current
through W , s = jω and ω is the angular frequency.
The inverse Laplace transform suggests that the
impedance is defined by a square-root character-
istic with time. This is a specific case of a more
generic fractional-order impedance.

For the proposed diffusion element, the square-
root-of-time characteristic is exhibited by the volt-
age, rather than the impedance. This simplifies
analysis because diffusion is no longer directly cou-
pled with current.

3. Data Processing

3.1. Initial processing

As discussed in Section 2, there are two initial
processing steps for OCV and the diffusion states.
The derivative ∂VOC

∂SoC is calculated off-line using
pseudo-OCV data, obtained using a 0.1 C-rate dis-
charge from 100 to 0% SoC. This is then used in
equation 2. The OCV is initialized with the cell
voltage after a rest period. In practice, since it is
not always possible to rest the cell, methods such
as Kalman filters can be used [26].
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Figure 2: Cell current and output voltage of simulated
datasets

To obtain the diffusion voltage as shown in equa-
tion 21, step change times tn and step change values
∆In must be calculated from the cell current. A
new current step is defined when the observed cell
current changes by more than by a small threshold
Ithr over a single sampling interval. This is repre-
sented by the conditions

if
{
|I(tk)− I(tk−1)| > Ithr

then

{
tn = tk

∆In = I(tk)− I(tk−1)

(23)

When visualizing and analyzing results, it is use-
ful to know the SoC and SoH. The D2RC does not
use these states for modelling or fitting. SoC quan-
tifies the remaining charge q in the cell relative to
the maximum charge capacity of the cell Qm, given
by

SoC =
q

Qm
(24)

The capacity Qm decreases as the cell degrades.
SoH is defined as the normalized maximum capac-
ity, or Qm relative to its initial value,

SoH =
Qm
Qm0

(25)

Values for Qm and q are obtained from coulomb
counting. Processing for SoC and SoH is performed
offline, and is used only for providing a reference
when plotting results.

3.2. Parameter identification

Parameter identification is performed with con-
strained function minimization. This is imple-
mented here using MATLAB-based global opti-
mization for non-convex functions [30], though
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many other approaches have been studied [31]. The
problem statement is given by

minimize f(θ)

subject to θ � 0
(26)

We define

f(θ) = ‖r‖22 + a
∥∥r′∥∥2

2

r(k) = y(tk)− ŷ(tk, θ)

r′(k) = r(k + 1)− r(k)

θ = (R0 R1 R2 C1 C2 AD)T

(27)

for all k = 1, . . . ,K, where there K available data
points, y and ŷ are the observed and predicted data,
θ is the parameter vector, and we set the weight-
ing a = 1. The objective function f is composed of
two terms: the sum of squared residuals (SSR) ‖r‖22
and the sum of squared residual differences (SSRD)
‖r′‖22. The SSR term minimizes the total tracking
error. The SSRD term performs quadratic smooth-
ing to avoid large spikes in prediction and increase
agreement in curvature between the observed and
predicted data.

Since the OCV variation has no fitting parame-
ters, the observed data is defined as

y(t) = VOC(t)− Vo(t) (28)

and the predicted data is given by

ŷ(t, θ) = Vs(t) + Vct(t) + VD(t) (29)

Data predictions are defined with the discrete-time
expressions as derived in Section 2, represented in
state-space form as

Vs(tk+1)
Vct(tk+1)
VD(tk+1)

 =


R0i(tk+1)∑2

n=1Rn

(
iRn(tk)e−

∆t
RnCn + i(tk)(1− e−

∆t
RnCn )

)
AD

∑Np

n=1 ∆In
∂VOC

∂SoC

√
H(tk − tn)

(
∆t+ ψ2

n(tk)
)


(30)
with initial conditions of

Vs(0) = R0i(0)

Vct(0) = 0

VD(0) = 0

(31)

Optimization also requires an initialization of the
parameter vector. This is accomplished with rea-
sonable guesses of the expected magnitudes.

4. Simulated Data

4.1. Data simulation with a physics-based model

Simulated data is generated using a coupled
agglomerate-scale and electrode-scale continuum
PBM for an NMC cell, described in detail in
[32, 33]. This is used to verify the physical rele-
vance of the proposed diffusion element. The PBM
is known to simulate a single capacitive effect, so
the D1RC is used for ECM parameter estimation.

Internal cell states are defined as user inputs, so
changes in cell behavior can be linked directly to
the internal states. There are 3 states chosen for
evaluation: agglomerate diffusivity Dagg, reaction
constant krxn, and contact resistance Rc. Diffusiv-
ity governs the diffusion of lithium ions through the
agglomerates due to concentration gradients. Re-
action constant is directly proportional to exchange
current density. Contact resistance is the resistance
of the current collector. The selected internal states
are summarized in Table 1. These specific states are
chosen to cover the same overpotentials captured by
the DNRC model. Each internal state is expected
to correlate with a single electrochemical overpo-
tential: diffusivity with diffusion, reaction constant
with charge transfer, and contact resistance with
the solution overpotential.

The PBM is used to generate 3 datasets with
the simulated pulse protocol. In each dataset, one
of the three states is varied whilst the others are
kept constant. Like the experimental pulse proto-
col, the simulated voltage responses represent SoC
levels from 0 to 1. The simulated data is shown in
Figure 2.

As shown in equation 16, the proposed diffusion
constant AD can be used to directly estimate the
true diffusivity when the internal material parame-
ters are known. The apparent diffusivity D̂ is given
by

D̂ =
4āx
π

( βvM
SFAD

)2
(32)

where āx = 5.67 is the average experimental un-
derestimation prefactor and β = 1/0.55. The value
of āx is derived from the results in [33]. It rep-
resents the amount by which the physical assump-
tions used to derive AD are known to underestimate
D̂ in porous electrode systems. The value of β is
the inverse of the maximum stoichiometric added
lithium relative to NMC. The molar volume vM of
NMC is calculated using

vM =
MNMC

ρNMC
(33)
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Figure 3: Variation of estimated D1RC parameters against (a) varying true diffusivity, (b) varying reaction constant, and (c)
varying contact resistance; (d) Apparent diffusivity extracted from the D1RC model, plotted against SoC for selected values
of true diffusivity (left), and plotted against true diffusivity (right); and (e) MAPE of D1RC voltage predictions
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Figure 6: Voltage tracking and MAPE for unipolar and bipolar pulse, with (a) samples of observed and predicted voltage and
(b) the D2RC MAPE

where MNMC = 96.46 gmol−1 is the molar mass
of NMC, and ρNMC = 4.7 gcm−3 is the density of
NMC. The active surface area is given by

S =
3εAM
Lagg

ve (34)

where εAM = 0.306 is the volume fraction of active
material, Lagg = 1µm is the size of the agglomerate,
and ve is electrode volume, which varies with model
parameters.

4.2. Comparison between physics-based model and
proposed model

Results for the comparison between the PBM and
the proposed D1RC model are shown in Figure 3,
with 3 plots displaying the variation of D1RC pa-
rameters with internal PBM states, a plot of the ap-
parent diffusivity extracted from the D1RC model,
and a comparison of the MAPE of the voltage pre-
dictions. There is good agreement between the
D1RC predicted voltage and the PBM generated
voltage, with average MAPE below 0.5%, as shown
in Figure 3e.

There are clear and distinct trends in the D1RC
parameters for each dataset. When diffusivity is
varied, correlation is strong with AD but negligible
with R0 and R1. When the reaction constant is var-
ied, correlation is strong with R0 and R1 but neg-
ligible with AD. When contact resistance is varied,
correlation is very strong with R0, and negligible
with R1 and AD.

The results in Figure 3 show that the effects of
individual cell states can be captured by the D1RC
model. As expected, the novel diffusion element
is most correlated with the varying diffusivity, and
R0 is most correlated with the contact resistance.
Varying the reaction constant, however, has more
complex effects on the voltage response that cannot
be captured by a single circuit element. It is cor-
related with both the charge transfer and solution
overpotentials.

Apparent diffusivity D̂ is compared with true dif-
fusivityDagg in Figure 3d, plotted against both SoC
and Dagg. Unlike Dagg, which does not vary with

SoC, D̂ does vary with SoC. This may be due to
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Table 1: Internal cell states varied in physics-based model simulations

Symbol Meaning Range Units
Dagg Agglomerate diffusivity {0.2, 0.3, . . . , 1} × 10−10 [cm2 s−1]
krxn Reaction constant 10ˆ{−8,−7.8, . . . ,−6} [mol−0.5cm−0.5s−1]
Rc Contact resistance {0.1, 0.2, . . . , 1} [kΩ cm2]

Table 2: Cell characteristics

Characteristic Value Units
Cell chemistry NCA [—]
Nominal capacity 3000 [mAh]
Cut-off voltage 2.5 [V]
Cut-off current 150 [mA]
Max charge voltage 4.2 [V]
Peak charging current 4 [A]
Peak discharge current 15 [A]

SoC-varying states in the PBM, such as initial con-
centration, that are not accounted for by elements
in the D1RC model. The trend line of D̂ is highly
correlated with Dagg, showing good agreement be-
tween the apparent and true diffusivities.

5. Experimental Data

5.1. Data collection

Data was collected using 3 lithium nickel cobalt
aluminum (NCA) oxide cells (Samsung INR18650-
30Q). NCA cells have desirable performance, but
require additional safety considerations [34]. Cells
are cycled simultaneously and under the same con-
ditions to reduce the effects of individuality. Cell
characteristics are summarized in Table 2.

Cells were cycled using the Neware BTS4000 se-
ries 5V6A cycler, held at 25◦C and standard pres-
sure. Cell voltage and cycler current are monitored
at 10 Hz.

Experimental data is collected using two cycling
procedures: pulse injection at various SoC and
SoH, and an urban dynamometer driving schedule
(UDDS) drive cycle. Pulse injection data, shown
in Figures 4b and 4c is used to evaluate the ECM
under different charging and degradation levels for
large step changes in current. Drive cycle data,
shown in Figure 4d, is used to evaluate the ECM for
a pseudo-randomly varying input current sequence.
The two datasets aim to isolate the effects of in-
ternal state variation and input signal variation on
estimation accuracy.
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Figure 7: Evolution of estimated D2RC parameters with SoH
for charge portion of experimental data (individual values
and trend line)

Cycling procedure for pulse injection is illus-
trated in Figure 4a. The capacity check is per-
formed with a 0.1 C-rate constant current (CC)
discharge from full. This is used to determine the
SoH of the cell, which ranges from 0.69 to 1. After
the cell is recharged using CC and constant voltage
(CV), various SoC levels ranging from 0.5 to 0.8
are achieved using a 0.3 Ah discharge. Degrada-
tion is performed with 50 charge/discharge cycles
at 1 C-rate. Pulses are applied to the cell after a 1
hour rest period. Positive cycler current indicates
current into the cell.

5.2. Results for pulse injection data

DNRC model performance is first compared with
conventional NRC model performance in Figure 5.
The average mean absolute percent error (MAPE)
and parameter estimation time (computation time)
for the charge portions of the pulses are plotted
against the number of RC-pairs, with standard de-
viation shown as error bars. The 0RC model only
uses R0, while the D0RC model uses R0 and the
proposed element AD.

As shown in Figure 5a, addition of the proposed
diffusion element improves estimation accuracy un-
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Figure 8: Results for experimental drive cycle data, with (a) percent error of predicted voltage and (b) predicted overpotential
voltages

til 4 RC-pairs are used. This suggests that it is more
efficient at modelling cell behavior compared to RC-
pairs. Thus the proposed D2RC model, which uses
6 parameters, is comparable in accuracy to the con-
ventional 4RC model, which uses 9 parameters.
The reduction of 3 fitting parameters to achieve
similar accuracies improves model interpretability.
Although the diffusion element demands more com-
putation time using the same number of RC-pairs,
the D2RC model is slightly faster than 4RC, as can
be seen in Figure 5b. Therefore D2RC strikes a
balance between low error and high interpretabil-
ity, and demonstrates a wholistic improvement over
conventional NRC models.

Voltage tracking using the D2RC model for the
unipolar and bipolar pulse is shown in Figures 6a
for various SoH and SoC. The MAPE for all 234
responses is shown in Figure 6b. MAPE is below
0.02% for the unipolar pulse, and below 0.5% for
the bipolar pulse. Error increases for bipolar pulse
estimation at low SoC and low SoH. This may be at-
tributed to OCV variation or degradation dynamics
not captured by the estimated OCV or the model
itself. Error also spikes during step changes, which
may affect the constant-current estimation.

Estimated parameters of the D2RC model for the
unipolar pulse are shown in Figure 7. There are
clear trends as the cell degrades and SoH decreases.
Resistances and the diffusion constant increase with
degradation, while capacitances decrease. This sug-
gests that the model parameters can be used to
track degradation. For cells cycled under differ-
ent conditions, the trends in the parameters may
be similarly distinct.

5.3. Results for drive cycle data

Results for a selection of drive cycle data are
shown in Figure 8a. The absolute percent error
is below 0.4%, showing that the D2RC model can
accurately track voltage for an arbitrary input sig-
nal . The physical relevance of the D2RC model
also allows the dominant overpotentials to be iden-
tified over time, plotted in Figure 8b. It can be
seen that the solution and diffusion overpotentials
are dominant, which is supported by observations
in [35].

5.4. Limitations

There are limitations to the DNRC model, as sug-
gested earlier. For tracking voltage with large vari-
ation and time horizons longer than 5 minutes, the
model as formulated would require a large number
of diffusion states arising from the number of step
changes in the interval. It is known, however, that
the effects of multiple diffusion steps can ‘cancel’
each other over time, meaning that it is not nec-
essary to retain all the states. The model can be
therefore be modified to use a fixed time horizon or
limit on the number of diffusion states. This would
reduce the computational burden with negligible ef-
fect on accuracy.

6. Conclusion

The DNRC ECM captures electrochemical over-
potential behavior, including solution voltage,
charge transfer, and diffusion, using a series resis-
tor, RC-pairs, and a novel diffusion element. The
DNRC ECM can be implemented in discrete-time
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state-space form, allowing for real-time estimation.
Three-fold validation with experimental and PBM-
simulated data shows that D2RC ECM parameters
not only yield high accuracy predictions, but are
also linked to internal cell states.

The D2RC ECM may provide a simple and fast
method to track battery degradation processes us-
ing time-domain data. With further research, the
D2RC model may be able to show that different
battery cycling conditions, such as extreme temper-
atures, high C-rates, or extreme SoC, yield different
‘signatures’ in the parameter evolution plots. Com-
bined with fast and accurate SoH estimation tech-
niques, the D2RC ECM could then be used in the
BMS to actively adjust battery pack performance
to reduce degradation [36] thus allowing for new
control methods.
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