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Abstract—Power-efficient torque control of the
Wound Rotor Synchronous Machine (WRSM) below
base speed requires a minimization of electrical losses,
namely copper losses. In this paper, the Maximum
Torque per Ampere (MTPA) optimization problem is
presented and solved using a convex pareto frontier of
simulated or measured data points. Three filtered solu-
tion sets are mapped to current space using piecewise
affine functions, which approximate the current using a
piecewise linear function for a given torque. This set of
piecewise linear functions enables a machine controller
to implement MTPA online or as an offline lookup ta-
ble. Simulated and experimental results are presented
for a 65 kW, FEA-sampled WRSM. Compared to linear
MTPA, the PWA MTPA functions are shown to reduce
torque error by > 25%, reduce average copper loss by
> 20%.

Index Terms—Loss Minimization, Motor Parame-
ters, Piecewise Linear Techniques, Torque Control,
Wound Rotor Synchronous Machine

This research is the continuation of the paper “Piecewise
Affine Maximum Torque per Ampere for the Wound Rotor
Synchronous Machine” presented at the 2022 IEEE Trans-
portation Electrification Conference and AIAA/IEEE
Electric Aircraft Technologies Symposium [1].

I. Introduction
The focus of this research is to minimize copper losses

of the wound rotor synchronous machine (WRSM) given
a desired torque. WRSMs are a class of electric machines
used in industrial and residential applications including
transportation (e.g., electric vehicles, EVs), power gener-
ation, and more.

Although recently WRSMs have shown their effective-
ness in the EV space (the Renault Zoe vehicle uses
WRSMs since 2012 [2]), WRSMs have been used pri-
marily in power generation (10 MVA - 2200 MVA) for
decades [3], [4]. WRSMs have numerous advantages over
their permanent magnet synchronous machine (PMSM)
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counterpart, including: a higher base speed, reduced cost
given that no expensive, rare-earth magnets are included
in assembly, and their ability to modulate rotor flux leads
to higher level of controllability. One advantage of this is
the reduction of the volt-amp (VA) rating of the inverter
by direct power factor correction [5]. Another advantage is
that at high torque, low speed operation (common in EVs)
this modulation can be used to decrease the stator current,
reducing cost [3]. However, there are disadvantages to
using WRSMs as opposed to PMSMs such as: increased
mechanical complexity, lower power density, and higher
copper losses due to the added rotor windings. Finally, a
strong, nonlinear coupling between the direct (d) and rotor
(r) dimensions exists in WRSMs.

Machine controllers are able to directly control and
regulate some combination of voltage, current, or flux.
This makes controlling torque generally difficult. The most
common approach is to define a set of reference currents
for any given reference torque. Because torque is a non-
convex function of current [6], the mapping is generally
not unique, and there is no optimal solution to minimize
copper losses. In literature, solutions to this problem are
referred to as Maximum Torque per Ampere (MTPA).
To prevent high flux error during saturation and cross-
saturation, the WRSM must operate in the linear and non-
linear regions of the magnetic model [7]–[15]. This makes
the MTPA problem for the WRSM more complicated than
for the PMSM.

Existing offline methods to solving MTPA for the
WRSM include the addition of a cross-coupled torque term
and decreasing the inductance in saturation. This method
produces a high order torque equation with ten terms that
is challenging to optimize but nonetheless can be mapped
to a dense LUT for high accuracy at the expense of high
memory usage [16]. Online methods to solving MTPA with
a nonlinear magnetic flux include computing the real-time
parameters of the machine (resistance, inductance) using
Extended Kalman Filters. Then Ferrari’s method is used
several times to reach a solution within some range of error
[17], [18]. This method is computationally intense on a
micro-controller.

This research proposes a method to create three dif-
ferent MTPA functions using simulated or experimental
machine values: one using pareto-optimal values as points
for a MTPA current path, and two using convex pareto-
optimal values. In all three cases a Piecewise Affine (PWA)
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Fig. 1: WRSM motor drive (gray) with an example motor
controller (white) using MTPA function (blue) to generate
reference current from reference torque

MTPA function is created using the values. This produces
a set of computationally inexpensive linear functions for
any reference torque. Nonlinear magnetic flux (saturation
and cross saturation) is included as it is present in the
experimental or simulated points. The three MTPA func-
tions are optimized for lowest copper loss, lowest torque
error, and lowest computation time, respectively.

This paper is organized as follows: the WRSM dynamic
model is presented in Section II. The torque and power
loss characteristics for the WRSM are explained in Section
III, then the MTPA optimization problem and solution
sets are described in Section IV. The PWA map linking
the solution sets to a continuous MTPA path in three-
dimensional current space is presented in Section V. Re-
sults for an experimental setup are shown in Section VI,
and finally Section VII concludes the paper.

II. WRSM Motor Model
The three-phase WRSM can be described dynamically

as a state-space model [19]. For formal simplicity and the
common challenges of displaying spaces higher than three,
this research focuses on the most common WRSM used in
motor drives: a neutral-point isolated machine (without
zero-axis flux and current) and without damper windings.
However, it is noted that it is trivial to generalize this
research to higher dimensions. Throughout this research,
we use the power-invariant Clarke transformation and the
magnetic axis of the field winding is used as reference angle
of the Park transformation.

The voltage equations of this WRSM are

λ̇r = vr −Rrir = v̄r, (1a)
λ̇d = ωλq + vd −Rsid = ωλq + v̄d, (1b)
λ̇q = −ωλd + vq −Rsiq = −ωλd + v̄q, (1c)

where ˙ is the d
dt operator; λr ∈ R is the rotor, i.e.

field, flux linkage; λd, λq ∈ R are the d-axis and q-axis
stator flux linkages respectively; i ∈ R and v ∈ R are
the currents and voltages of the appropriate dimension;
Rr, Rs ∈ R+ are the rotor and stator resistances, and

ω ∈ R is the synchronous speed, i.e. the electrical velocity
of the machine. Furthermore, we introduce the voltages v̄
that are the terminal voltages compensated by the winding
resistive voltage drop. This concept can be generalized
to include compensation for inverter nonlinear behavior
such as switch on-voltage drops and dead-times [20]. The
machine currents map onto machine flux with a nonlinear
map φ : R3 → R3

λr = φr(ir, id, iq), (2a)
λd = φd(ir, id, iq), (2b)
λq = φq(ir, id, iq), (2c)

that captures magnetic coupling between axis, magnetic
saturation, and cross-saturation [19]. These equations can
be written as a standard state-space system in discrete
time with sampling period Ts

λ+ = f(λ, v̄), (3a)
i = g(λ), (3b)

where the state is the flux λ = [λr, λd, λq]T ∈ Λ, the
input is the compensated voltage v̄ = [v̄r, v̄d, v̄q]T ∈ V,
and the measurement is the current i = [ir, id, iq]T ∈ I.
The state-space variables are finite in all dimensions and
are approximated with box constraints

I = {i ∈ R3|Imin ≤ i ≤ Imax}, (4a)
V = {v̄ ∈ R3|V̄min ≤ v̄ ≤ V̄max}. (4b)

The flux constraint is defined as a derivative of the cur-
rent constraint Λ = φ ◦ I. Furthermore, the flux (and
current) constraints are chosen such that the rotor flux
(and current) is positive λr ≥ 0 (and ir ≥ 0) without loss
of generality.

The dynamic equation is expressed in vector notation
as [21]

f(λ, v) = (I − ωTsJ)λ+ Tsv̄, (5)

where J is the 90° rotation matrix in the dq plane

J =

 0 0 0
0 0 −1
0 1 0

 . (6)

The output function g : R3 → R3 is the inverse of the
nonlinear flux map φ(·) = [φr(·), φd(·), φq(·)]T . Typically,
φ(·) is bijective and the output function is defined as

g(λ) = φ−1(i). (7)
The map φ(·) is typically obtained with with finite

element analysis (FEA) or obtained with experimental
measurement campaigns. The equation for relating current
to flux linkage in the WRSM without saturation has the
form

λ = Li+ ψ, (8)

where L ∈ R+
3×3 is the inductance matrix and ψ ∈ R3×1

is the flux-offset vector

L =

 Lrr Lrd Lrq

Ldr Ldd Ldq

Lqr Lqd Lqq

 , ψ =

 ψr

ψd

ψq

 . (9)
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Fig. 2: WRSM flux vs current: experimental (blue), ex-
ample linearization through origin (orange), example of
three-segment PWA (yellow).

The diagonal terms of L are the self-inductances of the
rotor (Lrr) and stator (Ldd, Lqq), while the non-diagonal
terms are the mutual inductances between the three axis.
Typically Lrq, Ldq, Lqr, and Lqd are negligible. In this
formulation L is constant and the fluxes are linearized as
shown in Fig. 2.

III. Motor Torque and Power Loss Models
In many machine applications, the input to the control

system is a desired or reference torque T ∗ [Nm], while the
controller is able to directly actuate winding rotor and
stator voltages v̄ and thus currents i. Thus it is desirable
to create a direct mapping between torque and current in
a way that minimizes electrical losses in the machine. For
the WRSM an example control diagram is shown in Fig.
1.

The power invariant machine torque per pole pair is

τp(i, λ) = τ(i, λ)/p = iT Jλ, (10)

where τ : R6 → R is the machine torque and p is the
number of pole pairs.

Expanding (10) using (8) yields the quadratic equation

τp(i) ≈ iT JLi+ iT Jψ, (11)

a linearized approximation of τp(i) using φ(·). τp(i) = T ∗

can be shown to be a saddle point of τp(i), as the Hessian
matrix H(τp(i) = T ∗) has positive and negative eigenval-
ues.

The proposed MTPA concept can be combined with any
copper loss models. The simplest has quadratric terms for

Fig. 3: Pl = πlc(i, λ) for Pl = {0.2 kW, 0.3 kW, 0.4 kW,
0.5 kW, 0.6 kW, 0.7 kW, 0.8 kW, 0.9 kW, 1.0 kW}

Fig. 4: Tp = τp(i, λ) for Tp = {−42 Nm/p, −20.4 Nm/p,
1.1 Nm/p, 22.7 Nm/p, 44.3 Nm/p, 65.9 Nm/p,
87.4 Nm/p, 109 Nm/p}

winding losses πlc : R6 → R of an electric motor [22].
In this study copper loss is approximated by φ(·) and
modelled as

πlc(i, λ) ≈ iT Ri, (12)

defined over the sets (19) and (18).
The matrix R defines the winding resistances that

approximates DC and (skin effect and proximity effect)
AC winding losses [23], [24]. Iso-copper-loss and iso-torque
surfaces are shown in Fig. 3 and Fig. 4 respectively.

IV. Maximum Torque per Ampere

A. Problem Statement

MTPA targets minimizing copper losses (12) for a given
reference torque T ∗

p . The output is a reference current
i∗ and reference flux λ∗. The most general form of the
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problem is stated as follows: for a torque reference T ∗
p , the

MTPA current and flux references are

[i∗, λ∗] = arg min
i∈I,λ∈Λ,v̄∈V

πlc(i, λ), (13a)

subj. to f(λ, v̄) = λ, (13b)
g(λ) = i, (13c)
τp(i, λ) = T ∗

p . (13d)

The objective function (13a) being minimized is electri-
cal losses (12). Constraint (13b) is the flux λ and voltage v̄
relationship from (1) and requires steady state operating
points (λ̇ = 0). Constraint (13c) links current to flux using
φ(·), and (13d) constrains the quadratic torque function to
the specific reference torque of interest T ∗

p .
The solution set for all T ∗

p ∈ T , where T is the set of
allowable machine torques, will be sets of currents I, fluxes
Λ, torques T , and power losses P where

I = {i∗ ∈ I, s.t. Eqn. 13} ∈ R3 (14a)
Λ = {λ∗ ∈ Λ, s.t. Eqn. 13} ∈ R3 (14b)
T = {T ∗ ∈ T , s.t. Eqn. 13} ∈ R (14c)
P = {P ∗

l ∈ P, s.t. Eqn. 13} ∈ R. (14d)

which we can combine as

Γ = {T ,P, I,Λ} ∈ R8. (15)

This optimization problem is NP-Hard to solve due
to the functions πlc(i, λ), τp(i, λ), and state space model
equations f(λ, v) and g(λ), thus there is no analytical
solution for Γ. An example solution for one specific Tp ∈ T
is shown in Fig. 5 showing torque and copper loss surfaces.

This formulation already accounts for saturation and
cross saturation inside the machine because the datapoints
Γ include i and λ togehter, therefore changes in inductance
L throughout the machine are also modelled. Another
dimension that can be added to the data set is a variable
resistance matrix R, either by experimental measurements
or FEA-analysis. If the diagonal terms in the matrix R
increase at the same rate with temperature, then by (12)
the solution set Γ will stay unchanged, however losses will
be higher.

B. Quantitative Solution to MTPA
This research focuses on solving the MTPA problem

assuming low speed operation. In these conditions, the
copper loss is dominant over core loss, and the machine
operates below base speed ω ≤ ωb, i.e. no field weakening.

Taking a large sample of random experimental or simu-
lated datapoints can yield an approximate solution to (13).
FEA-simulated data points will have a current i and flux
λ, while experimental data points will only have a known
current i and an approximated flux λ using flux-linkage
map approximations via φ (sometimes called virtual flux).
These points can be directly mapped to a torque per pole
pair Tp and copper loss πlc by (10) and (12).

The set of all experimental datapoints is denoted

Γ = {T ,P, I,Λ} ∈ R8 (16)

Fig. 5: Solution to MTPA showing τp(i) = T ∗ (blue),
minimized πlc(i∗, λ∗) (green), and solution point (red).

where a single member Γj has four components (current,
flux, torque per pole pair, power loss). The values of each
component for each member can be denoted Γj,k where
j is the component and k is the index of the value. For
example Γ1,1 is the torque of the first data point. The set
of just one component, say torque, for all points can be
denoted Γ1,k, while the collection of all components for
one value, say the first value, can be denoted Γj,1.

The datapoints can be plotted according to their power
loss, Γ2,k, and inverse torque, Γ−1

1,k to see which points
are the most optimal (minimum). From the set of all
datapoints Γ, there will be pareto-optimal, or efficient,
values. A pareto-optimal value is defined as a value in Γ
that cannot further decrease Γ−1

1,k without increasing Γ2,k

or vice-versa [25].
The set of all pareto-optimal points is called a pareto

frontier. The pareto frontier for a WRSM can be denoted
Γp. The points in the pareto frontier will all have unique
torques. The pareto frontier points Γp produced by this
method can be considered candidate points for a general
MTPA function that will exist in three-dimensional cur-
rent space I. The curvature of the collection of lines con-
necting all adjacent pareto-optimal points Γp in the two-
dimensional Γ2,k vs Γ−1

1,k space is not necessarily convex.
A new set Γc is defined as the largest subset of pareto-
optimal points that creates a convex function when line
segments are created between the points.

The point Γj,x that corresponds to minimum torque
Tp,min ∈ Tp will always be in Γc because the minimum
torque point occurs at zero losses, and no point can have
negative losses. Furthermore the point Γj,x corresponding
to maximum torque Tp,max ∈ Tp will also always be in this
set as no point can have higher torque, regardless of losses.

The curvature of the collection of lines connecting all
adjacent Γc points in the three-dimensional current space
(I) is not necessarily convex. A new set Γcc is defined
as the largest subset of Γc points that creates a convex,
piecewise linear function when line segments are created
between the points and grouped in the current space. The
cc denotes that the piecewise linear function created is
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Fig. 6: Diagram showing relationship between the sets Γ,
Γp, Γc, Γcc, and Γ

Fig. 7: Example points of Γ,Γp,Γc,Γcc, and Γ shown on
power loss Γ2,k vs inverse torque Γ−1

1,k axis

convex in the two-dimensional (Γ−1
1,k,Γ2,k ∈ R2) space,

and three-dimensional (Γ3,k = I ∈ R3) space. By these
definitions Γ ⊆ Γp ⊆ Γc ⊆ Γcc, shown in Fig. 6.

Connecting points in Γc with line segments produces
torque and powerloss trajectories that are more optimal
than using any interior pareto-optimal points. Connecting
points in Γcc with line segments produces torque and
powerloss trajectories that are less optimal than using
any interior pareto-optimal points. Connecting any data
points using straight line segments is an approximation
that is only valid for densely-sampled points. Adjacent
points must be within a minimum ε euclidean distance of
each other to be considered close enough to approximate
a line between them. If two points are not close enough to
meet this requirement, more points must be simulated or
measured. Specifying the distance ε is outside the scope of
this paper.

Generating a convex pareto frontier Γc can be obtained
using a modified divide and conquer algorithm for a set
of solutions [26], and repeated to obtain Γcc. Linking
the line segments created using Γp, Γc, and Γcc in two-
dimensional (Γ−1

1,k,Γ2,k ∈ R2) space, shown in Fig. 7,
to three-dimensional (Γ3,k ∈ R3) current space can be

Fig. 8: (Left) Using four experimental data points (Γj,1,
Γj,2, Γj,3, Γj,4) to partition torque-powerloss space into
three one-dimensional simplices (T1, T2, T3); (Right)
corresponding three, one-dimensional simplices in current
space (I1, I2, I3)

modelled using piecewise affine maps. Each set will have
unique properties.

V. Piecewise Affine Map for MTPA

This research proposes to express the approximate
MTPA solution path as a piecewise-affine (PWA) function.
PWA maps divide a nonlinear map into M domains over
which the function is linearized [27]. The torque domain
Γ1,k is partitioned into torque regions Tj , but can equiv-
alently be partitioned into copper loss regions. Points in
this space are interchangeably described as torque per pole
pair Tp,k or Γ1,k values equivalently. The current domain
Γ3,k will also be partitioned into current regions Ij , and
currents can be described by ik or Γ3,k.

Hence we express the PWA torque to current map, or
MTPA function, h(Tp) as

i = h(Tp) ≈ hP W A(Tp) =


m1Tp + i1, Tp ∈ T1,

m2Tp + i2, Tp ∈ T2,

· · ·
mMTp + iM , Tp ∈ TM ,

(17)

where i = mjTp + ij is the affine equation that maps
torques-powerloss points Tp ∈ Tj onto current points
i ∈ Ij and Ij is the image of the domain Tj . The torque
simplices must cover the full range of machine torques, or
{T1 ∪ T2, . . . TM } = T . The affine map is defined by the
three-dimensional slope mj and a current offset ij . This
is shown in Fig. 8. The points used to create h(T ) can
be from sets Γp, Γc, or Γcc; denoted hp(T ), hc(T ), hcc(T )
respectively. The process of using the points to create h(T )
is described next.

PWA maps divide the original domain into M sets. Each
subset is defined to be a simplex, which is the simplest
possible polytope in any D-dimensional space and a line
segment in the single dimension of the given problem. A
D-dimensional simplex can be defined as the convex hull
of its D+1 vertices (called the V-notation; alternatively, a
simplex can be defined by its by its faces defined as affine
inequalities called the H-notation [28])

Tj = H({Tj0 , Tj1}), (18)
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where Tj0 , Tj1 ∈ T . All torques in this section are per pole
pair, thus the subscript p in Tp is dropped for simplicity.
Each torque simplex Tj forms a domain of an affine map
that maps into the current simplex

Ij = H({ij0 , ij1}), (19)

where ij0 , ij1 ∈ I. The torque and current points must be
from the same experimental point, i.e. Tj0 and ij0 belong
to Γj,j0 . Example simplices that are linked in both spaces
are shown in Fig. 8. Each line segment Tj is defined by
two vertices. Let one vertex Tj0 be the support vector such
that we can move the origin T̄ = T − Tj0 . In the shifted
dimension, the simplex is defined by

T̄j = H({0, T̄j1}), (20)

where T̄j1 = Tj1 −Tj0 and T̄j1 spans the simplex. Further-
more, we shift the current space in the same way, ī = i−ij0

that results in the simplex

Īj = H({0, īj1}), (21)

where īj1 = ij1 − ij0 and īj1 spans the simplex. The D = 1
simplices and the shift of origin are illustrated in Fig. 9.

The nonzero vertices can be interpreted as a basis and
since an affine map is an isomorphism, the relative position
of a vector in the current and flux simplex is the same

T̄ = aT̄j1 . (22)

The a coefficient can be obtained similar to how space
vector modulation (SVM) computes relative on-times [27].

We project T̄ onto the basis of T̄j

pj = projT̄j1
T̄ = T̄j1 · T̄

‖T̄j1‖
, (23)

and obtain the relative length of the vector by dividing
the magnitude of the projection with the magnitude of
the basis vector

a = ‖pj‖
‖T̄j1‖

. (24)

To find the current vector ī, we multiply a with the basis
vector of īj , īj1

ī = aīj1 . (25)

Setting the a coefficients in (22) and (25) equal

T̄

T̄j1

= ī

īj1

(26a)

and solving for i yields the resulting linear map

i = mjTp + ij (26b)

where mj = i−ij0
Tj1 −Tj0

and ij = ij0 −mjTj0 A visualization
of this is shown in Fig. 9.

VI. Simulated and Experimental Results
A 65 kW WRSM with the parameters listed in TABLE

II is used to validate the MTPA formulation and solutions.

Fig. 9: (Left) Torque-powerloss shifted simplex T j and
projected vector T j1 mapped to (right) shifted current
simplex Īj and projected vector ī by PWA function h(T )

Fig. 10: WRSM cross section showing a saturated flux
density B distribution in Tesla at iq = 1(pu) (left), and
id = 1(pu) (right)

A. Simulated Results

The WRSM was modelled computationally using the
Finite Element Method (FEM) and analyzed using Finite
Element Analysis (FEA). FEA approximates flux λ in the
machine based on current i, machine geometry (armature
windings, slip rings, saliency), and magnetic materials
(core laminations), as well as parasitics (fringing, core
loss, copper loss). Torque is calculated using (10). The
data points obtained are evaluated over small areas using
approximations to obtain an accurate model of how the
machine will function full-scale. Fig. 10 shows a cross
section of the machine in simulation showing the stator
at fully saturated stator current (id and iq) and the
resulting magnetic fields. The data obtained is the full set
of datapoints Γ.

The sets Γp, Γc, Γc are obtained in post processing by
the methods described in Section IV. These sets are shown
in Fig. 11 in the two-dimensional (Γ−1

1,k,Γ2,k) space and
three-dimensional (Γ3,k) space. The majority of the points
from the FEA analysis are not in these sets. Of the 57, 288
generated datapoints the sizes of the sets were |Γp| = 403,
|Γc| = 60, |Γcc| = 47, or less than 1%.

The MTPA functions produced using Γp, Γc, Γc are
evaluated against a ‘linear’ MTPA (hlin(Tp)) which is a
linear trajectory between the maximum torque point and
the origin (in the current domain), as well as against a
cubic spline interpolated MTPA (hspl(Tp)) which uses the
points in Γcc but they are cubic spline interpolated instead
of piecewise affine interpolated.
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Fig. 11: FEA-Simulation results: (Left) Powerloss vs torque domain FEA-simulated points Γ and subsets Γp, Γc, Γcc,
(Right) Current domain sets Γ, Γp, Γc, Γcc and functions hp(Tp), hc(Tp), hcc(Tp),hspl(Tp), hlin(Tp)

B. Experimental Results

The motor testbench is shown in Fig. 12 and is con-
figured to run using the control diagram in Fig. 1. The
five h(Tp) functions were translated to controller code and
evaluated on a Texas Instruments TMS320F28379D real-
time microcontroller to test their computation time and
memory size.

In the PWA formulation, if N points are used to create
each h(Tp) function then N − 1 lines (or sub-domains) are
needed, therefore the memory size will grow at a rate of
O(N) (coefficients plus boundary conditions). The cubic
spline interpolation requires twice as much memory as
it must save four coefficients (third degree polynomials)
instead of two. The computation time of the PWA h(Tp)
functions has two components, a (cold start) search which
takes Nlog(N) time, and two floating point operations.
The cubic spline hspl(Tp) will use the same search, but
requires six floating point operations via Horner’s method,
therefore taking three times as long; both are O(Nlog(N))
computation time. As more inputs and outputs are added
cubic spline interpolations tend to increase in complexity
by factors of two over PWA [29]. hlin(Tp) has O(1) com-
putation and memory size, but is extremely inaccurate. A

summary of MCU performance is shown in TABLE III.
The time of the other control operations of the control
loop are shown in TABLE I.

Fig. 12: WRSM bench setup: (clockwise from left) Refer-
ence Actuation and Sampling, WRSM, Dyno: Induction
Machine, DC Supply, Chopper

For real-time evaluation, several tests were conducted.
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Fig. 13: 120s Experimental MTPA PWA results (Left)
Top to bottom: Torque (reference, measured, MTPA PWA
); Speed (reference and measured); Copper losses (exper-
imental, MTPA PWA) (Right) Top to bottom: rotor
current (measured, MTPA PWA); d-axis stator current
(measured, MTPA PWA); q-axis stator current (mea-
sured, MTPA PWA)

The first involved the WRSM being spun at a fixed
speed of 1000 1/min using a coupled industrial drive. The
WRSM exerts .5 - 44 Nm variable torque steps that follow
torque references over a 120s period. The experimental
MTPA function used was hlin. The MTPA references
generated offline by hp(Tp), hc(Tp), and hcc(Tp) (as well
as hspl(Tp)) are shown in Fig. 13 and are applied to
the requested torques in post processing. A drive cycle
emulating the operation of a passenger vehicle was also
conducted, where a reference speed trajectory is applied,
and the coupled industrial drive simulates the nonlinear
torque load due to vehicle dynamics. This experiment
is useful to show the operation of the MTPA functions
under dynamically changing speeds and torques (including
negative torque operation). It is shown in Fig. 14. Torque
is symmetrical about iq by (11), therefore the maps hp(Tp),
hc(Tp), hcc(Tp), and hspl(Tp) can handle negative torques
by inputting the negative of the requested torque, −Tp,
and then replacing iq with −iq at the output of the
function. Lastly, a close up of a torque step showing the
transient behavior of the controller and MTPA functions
is shown in Fig. 15.

In every experiment, the linear MTPA function hlin(Tp)
performs the worst, creating up to 70% additional cop-
per losses in some cases. This comes at the expense of
extremely fast computation and very low memory size.

The functions hp(Tp), hp(Tp), and hcc(Tp) have differ-

Fig. 14: Drive cycle with WRSM following dynamic speed
reference (right column top to bottom): experimental
and post-processed rotor current ir (top), stator currents
id (middle) and iq (bottom) using the MTPA maps
hp(T ), hc(T ), hcc(T ), and hspl(T ); (left column top
to bottom) experimental torque tracking a (middle)
speed reference, (bottom) real-time copper losses for each
MTPA function

TABLE I: Control Timing Parameters

Operation time (µs)

ADC Conversions 1.8
MTPA PWA Map hlin(t) 6.0
Clarke Park Transform 6.3

Flux Linkage Maps (×2) 14.6
PI Virtual Flux Controller 6.1

Inverse Clark Park Transform 6.3
PWM Generation 3.1

ent properties that are useful for different applications.
Averaged copper loss is shown in TABLE IV, as expected
from Section IV hc(Tp) outperforms hp(Tp) and hcc(Tp),
although all three are within 1% of each other. The PWA
MTPA functions outperform the cubic spline hspl(Tp),
with the trade-off of losing smoothness in I.

Because all of the h(Tp) functions are piecewise-linear
approximations of Γ, there will be error in the currents
produced. This error can be quantified by comparing
torque Tp (expected torque) to the resulting torque from
τp(h(Tp)), where i = h(Tp) is the set of current references.
This error is shown in Fig. 16. hc(Tp) and hcc(Tp) have
minimal error at Tp > 10 Nm/p, and hp(Tp) has very low
error throughout all torques. The spline MTPA hspl(Tp)
and linear MTPA hlin(Tp) bound the PWA interpolations
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Fig. 15: 50 Nm dynamic torque step (Top to bottom)
torque reference T ∗ and recalculated torques from currents
hp(T ), hc(T ), hcc(T ), hspl(T ), experimental and post-
processed rotor current ir and stator currents id, iq gener-
ated from hp(T ), hc(T ), hcc(T ), hspl(T ) MTPA functions,
real-time copper losses for each MTPA function

in torque error. This error presents itself in each of the
torque plots of Fig. 13, Fig. 14, Fig. 15 as well.

Finally, the shape of the MTPA trajectory for each
h(Tp) is different. hp(Tp) is very jagged, and even a small
torque change produces large differences in current (as
seen in Fig. 13). hcc(Tp) is the least jagged, and has the
property of being convex in I. hc(Tp) is a compromise
between the two.

In summary the PWA MTPA functions are reasonable
in terms of memory, computation time, average copper
loss, and torque error, however some perform very well in
some categories:

• hp(Tp): low torque error

• hc(Tp): low average copper loss
• hcc(Tp): fast computation time, small memory, convex

The two reference MTPA functions tend to operate on
extremes of two or more criteria

• hlin(Tp): fast computation, small memory, very high
error, very high average copper loss

• hspl(Tp): low torque error, slow computation time

TABLE II: WRSM Motor Drive Parameters

Parameter Value

Turns ratio Nf /Ns 39
Pole pairs p 2

Stator resistance Rs 11.732 mΩ
Rotor resistance (stator referred) Rr 5.461 mΩ

Shaft inertia 22.76E-3 kg m2

Switching frequency 10 kHz
Sampling frequency 20 kHz

Nameplate r-axis inductance Lr 1.956 mH
Nameplate d-axis inductance Ld 2.420 mH
Nameplate q-axis inductance Lq 0.789 mH

Base speed 3000 1/min
DC-link voltage 325 V
Maximum power 65 kW
Maximum torque 220 Nm

TABLE III: MCU Performance of MTPA Functions

Comp. Time (µs) Memory (KiB)

hlin(T ) 6 4
hp(T ) 226 102
hc(T ) 40 18
hcc(T ) 24 15
hspl(T ) 72 31

TABLE IV: Efficiency and Accuracy of MTPA Functions

Avg. πlc (W) Avg. T error (%) Convex in I

hlin(T ) 950 29.9 yes
hp(T ) 761.7 0.16 no
hc(T ) 758.9 1.68 no
hcc(T ) 759.0 1.69 yes
hspl(T ) 761.9 .07 yes

VII. Conclusion
In this study, the Maximum Torque per Ampere

(MTPA) problem was presented for the WRSM, and three
numerical solutions were proposed each with differing pros
and cons. The solution sets were chosen using pareto
optimal and convex points, which were linked together
in three-dimensional current space using Piecewise Affine
(PWA) functions to create a continuous current path for
all machine torques. The solutions were each validated and
compared using an experimental bench setup and show
reduction of torque error by > 25%, reduction of average
copper loss by > 20% compared to a conventional linear
MTPA map, and had reasonable computation time and
memory usage. The functions were created using FEA-
simulated points and experimentally tested on a 65 kW
test setup.
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Fig. 16: Torque error vs expected torque for five MTPA
functions hp(T ), hc(T ), hcc(T ), hlin(T ), hspl(T )
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