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Robust Control Invariant Sets
and Lyapunov-Based MPC for IPM

Synchronous Motor Drives
Matthias Preindl, Member, IEEE

Abstract—This paper proposes a novel simplified model
predictive control (MPC) scheme for interior permanent-
magnet synchronous machines (PMSM) drive systems. The
control problem is formulated in the αβ stator flux space.
The current–flux relation is eliminated from the MPC for-
mulation and can be implemented as nonlinear map or an
affine approximation without affecting the MPC complex-
ity. The model is combined with the Lyapunov-based MPC
concept. This scheme is shown to be asymptotically stable
using the convex control set (CCS) input constraint with
space vector modulation or pulse width modulation and
asymptotically set stable using the finite control set (FCS)
input constraint (with direct actuation). The stability prop-
erties are guaranteed for any cost function that is globally
defined and any prediction horizon N ≥ 1. These results
are validated using a software-in-the-loop (SiL) platform
and an experimental test bench.

Index Terms—Drive system, internal permanent-magnet
synchronous motor, model predictive control (MPC),
optimal control.

I. INTRODUCTION

M ODEL predictive control (MPC) is a control method for
multidimensional nonlinear constrained systems that

solves a constrained finite time optimal control (CFTOC) prob-
lem at each sampling time step. MPC has gained significant
attention in drive systems research, where methods can be clas-
sified into model predictive current control (MPCC) [1], [2],
model predictive torque control (MPTC) [3], [4], and model
predictive speed control (MPSC) [5], [6]. Each can be com-
bined with sensorless techniques [7], [8]. The methods can be
further classified with respect to the switching behavior. Using
a modulation scheme [space vector modulation (SVM), pulse
width modulation (PWM)] yields convex control set (CCS)
MPC [9], [10]. In finite control set (FCS) MPC [1], [11],
switching states, i.e., voltage vectors, are actuated directly.

MPC needs to be executed in a real-time environment [12],
[13]. The execution time is particularly critical for power elec-
tronics and drive systems, where sampling times are small and
control code is executed on embedded hardware with mediocre
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computation power. Typically, the prediction horizon is chosen
to be short (a few steps or N = 1) [1]–[6], [9], [10], [11], such
that the CFTOC has a low dimension. This paper proposes to
separate the permanent-magnet synchronous machine (PMSM)
current–flux map (nonlinear or affine) from the dynamics,
which is written in the αβ flux space. This approach yields
a simple dynamics (integrator) and time-invariant constraints.
The resulting control scheme (Fig. 1) is capable of taking
magnetic saturation and cross-saturation into account without
affecting the control complexity. A torque controller is obtained
combining the proposed method with a torque–current (or
torque–flux) look-up table (LUT) or the constrained maximum
torque per ampere (MTPA) concept [14].

The stability of MPC for drive systems is still an open
research topic [15]. The MPC stability theorem [16]–[19] tends
to be difficult to combine with controllers using an arbitrary
cost function, a short prediction horizon, or solvers using early
termination [20]–[22]. The MPC stability theorem (and derived
concepts) uses the optimal cost function as a Lyapunov function
between two sampling time instants (hence incompatible with
early termination as it does not reveal the optimal cost at each
sampling instant) [17]. This approach requires the system and
constraints to be time-invariant and the predicted state sequence
has to reach a terminal set. The terminal set needs to be control
invariant and a control Lyapunov function (CLF) has to be sat-
isfied for any state in set [17]. Either tends to be difficult to
verify for an arbitrary cost function, e.g., with nonlinear com-
ponents, and an integer input set. Also, the maximum control
invariant set, i.e., the largest possible terminal set, can be small
(dependent on the cost function). In this case, a long prediction
horizon is necessary to cover a required set of initial states.

This paper proposes a uniform global and robust stability
approach for CCS and FCS MPC. The resulting Lyapunov-
based MPC uses a contraction constraint named CLF constraint
to obtain stability. This constraint voids further requirements
on the cost function (terminal cost and terminal set) or predic-
tion horizon (generally a sufficiently long prediction horizon
is required to achieve a sufficiently large feasible initial set,
i.e., region of attraction). A major advantage of the proposed
approach is the ability to choose an arbitrary cost function with-
out affecting the stability properties of the closed-loop system
(the cost function is typically the preferred tool to manipulate
control behavior, e.g., the switching properties of FCS-MPC).
Also, it can be shown that the stability properties are preserved
in presence of early termination if the solution is primal feasible
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Fig. 1. Block diagram of MPC in the stator flux space; states: cur-
rent i, flux λ; inputs: voltage v; references: flux r̄, current r, torque
R; the PWM/SVM block is used for CCS-MPC and removed for FCS-
MPC; a proportional-integral (PI) controller is used for speed control and
provides current references using the constrained MPTA concept [14].

TABLE I
NOMENCLATURE

[25]. Robustness is achieved exploiting the voltage safety factor
that is used in drive systems to ensure controllability [14]. The
robust convergence of Lyapunov-based MPC is shown experi-
mentally using a cost function that does not penalize the control
errors but the variation of the input, i.e., switching.

This paper is organized as follows. The system model and
constraints are introduced in Sections II and III, respectively;
the stabilizability of the FCS system is shown in Section IV
and is extended to the CCS system in Section V; the Lyapunov-
based MPC is presented in Section VI and the validation is
shown in Section VII. The notation of this paper is summarized
in Table I.

II. DYNAMIC MODEL

The stator flux λαβ(t) ∈ R
2 of a PMSM motor evolves

according to [14], [25]

λ+αβ = λαβ + Tsvαβ (1)

where λαβ is the flux in the αβ reference frame, λ+αβ is the
flux of the next sampling time, and vαβ = vαβ,termial −Rsiαβ
is the compensated terminal voltage. For notational simplicity,

this equation is normalized dividing by the parameter
Λr = Tsvc

λ̄+αβ = λ̄αβ + v̄αβ (2)

where λ̄αβ = Λ−1
r λαβ is the normalized flux and v̄αβ =

v−1
c vαβ is the normalized compensated voltage. An αβ vec-

tor (current, voltage, flux) zαβ can be transformed into the dq
reference frame with zdq = Tdq(ε)zαβ using the Park transfor-
mation

Tdq(ε) =

[
cos ε sin ε
− sin ε cos ε

]
(3)

where ε is the electrical rotor position, which is either mea-
sured or estimated. In dq, the stator flux and armature (stator)
currents are related by a static map in the dq reference frame
equation [14], [25]

λdq = l ◦ idq ≈ Lidq + ψdq (4)

where l : R2 → R
2 is the nonlinear current–flux relationship

that takes saturation into account. It maps dq current into dq flux
globally and can be computed via finite-element method (FEM)
or measured experimentally. The map l is generally assumed
to be invertible. For control purposes, this relation is often
approximated with an affine equation using the parameters

L =

[
Ld 0
0 Lq

]
; ψdq =

[
ψ
0

]
(5)

where Ld and Lq are the d - and q -axis inductance; ψ is the
PM flux. This affine approximation is the basis for deriving
the well-known dynamic model of anisotropic PMSM, which is
written in the dq frame. However, the affine approximation can
deviate significantly from the real flux–current relationship. A
more general model is obtained interpreting (4) as (nonlinear)
output function [25]

iαβ = T−1
dq (ε) (l

−1 ◦ (Tdq(ε)λαβ)). (6)

Since the map l is assumed to be bijective, a controller can
be designed in the flux space and based on the time-invariant
dynamics (2) without loss of generality. This approach yields
the control system layout shown in Fig. 1. Using the PMSM sta-
tor flux as state comes with several benefits. The machine can
be described using a linear or nonlinear (e.g., via LUT) current–
flux relationship. This approach yields a simple dynamic model
(integrator) that simplifies the formulation and prediction of
MPC. The PMSM can be described either in the αβ or dq
flux space. In dq, the state (flux) is backward rotating while
a control (flux) reference has to be forward rotating in αβ. In
this research, the latter one is chosen since it yields nonrotat-
ing input constraints (see Section III) that are simpler to handle
and more efficient to compute. In dq, the state has a parametric
dependence on ω.

The goal of a current, i.e., flux, controller is to track a (nor-
malized) flux reference vector r̄αβ = T−1

dq (ε)r̄dq that is applied
externally, e.g., by a speed controller. Introducing the control
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error x = λ̄αβ − r̄αβ , the tracking problem is transformed into
a regulation problem that yields the state-space system

x+ = x+ u (7)

and the input u = v̄αβ − ū with

ū = −(r̄αβ − r̄+αβ). (8)

Thus, the normalized terminal voltage v̄αβ is the sum of a feed-
back controller u, which depends on the control error, and a
feedforward controller ū, which depends only on the reference.
The feedback controller u is used to achieve desired closed-loop
control properties, e.g., stability. The feedforward controller
(8) is necessary to introduce a time-varying reference vector
into the linear error dynamics (7). This controller can be sim-
plified making typical assumptions on the drive system: the
electrical speed is slowly varying with respect to Ts (zero order
hold), i.e., the angle evolves according to ε+ = ε+ Tsω; and
the dq flux reference vector is slowly varying with respect to Ts,
i.e., r̄+dq ≈ r̄dq . Using these assumptions, r̄αβ evolves according
to [25]

r̄+αβ ≈ T−1
dq (ε+ Tsω)Tdq(ε)r̄αβ = T−1

dq (Tsω)r̄αβ . (9)

This model describes r̄αβ as a vector that rotates with veloc-
ity ω and by the angle Tsω at each time step. Substituting
this model into (8), a proper formulation for the feedforward
controller is obtained

ū ≈ −(I−T−1
dq (Tsω))r̄αβ (10)

that describes ū as a function of r̄αβ and the parameter ω.

III. SYSTEM CONSTRAINTS

A drive system cannot be operated with arbitrarily large
states and inputs due to physical constraints. State constraints
are introduced by the rated current limit that prevents semicon-
ductors and the machine from overheating and failing. This is
achieved limiting the current magnitude to ‖i‖ ≤ Ir where Ir ∈
R>0 is the rated current. However, limited transient violations
(overshoots) are acceptable in most cases and it is sufficient
that the reference value satisfies the state constraint. Thus, state
limits are neglected for the MPC design and the stability assess-
ment. If state constraints are required, they can be introduced as
soft constraints.

On the other hand, input (voltage) limits need to be taken into
account since voltage source inverters provide a voltage with
finite magnitude. In this research, inverters are considered that
apply the input v̄αβ by either selecting switching states (direct
actuation) or via modulation (SVM/PWM). Thus, the feasible
inputs are defined by an input constraint set

v̄αβ = u+ ū ∈ V ⇔ u ∈ U def
= V − ū (11)

where U is the −ū shifted set V , as shown in Fig. 2. A volt-
age source inverter provides a finite amount of switching state
combinations. Applying these switching states directly yields
a finite number of voltages vectors vαβ ∈ V = Vs that can be

Fig 2. FCS and CCS input constraints.

applied to the terminals of an electrical machine. The set Vs is
called FCS and is defined by

Vs
def
= Tαβ ◦ {0, 1}3 = {v000, v100, . . . , v111} (12)

and Us
def
= Vs − ū using the Clarke transformation

Tαβ
def
=

2

3

[
1 −1/2 −1/2

0
√
3/2 −√

3/2

]
. (13)

These sets are depicted in Fig. 2. Using a modulation scheme
(PWM/SVM), a combination of vectors can be applied such
that any vector in the area spanned by Vs can be applied as
input vαβ ∈ V = Vd. The set Vd is called CCS and is defined as
the convex hull of Vs

Vd
def
= hullVs =

{
v ∈ R

2 | Hv ≤ 1/
√
3
}

(14)

and Ud
def
= Vd − ū, where

H
def
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
3/2 1/2√
3/2 −1/2

0 −1

−√
3/2 −1/2

−√
3/2 1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

These sets are depicted in Fig. 2. The purpose of the input u ∈
U is to implement a stabilizing feedback. In general, this can be
achieved if the origin belongs to the interior of U , i.e., 0 ∈ intU .
This is not practicable for Us due to its integer nature. However,
for the convex Ud, it is obtained enforcing

ū ∈ Vd 
 B =

{
v ∈ R

2 | Hv ≤ 1√
3
− b

}
(16)

where b ∈
(
0, 1√

3
− ‖Hū‖∞

]
and

B def
=

{
v ∈ R

2 | Hv ≤ b
} �= ∅. (17)

This condition tends to ū ∈ intVd as b tends to an infinitesi-
mal value. The condition (16) limits the shift of Vd (by −ū)
such that the resulting set Ud contains the origin in its interior.
The condition on the feedforward controller ū translates into a
condition on the reference r̄αβ (and ω).

Proposition 1: Let | ω | Ts‖r̄αβ‖ = | ω | Ts‖r̄dq‖ < 1√
3
− b,

then ū ∈ Vd 
 B.
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Proof: Considering that the (inverse) Park transformation
T−1

dq (ε) is orthogonal, i.e., ‖r̄αβ‖ = ‖T−1
dq (ε)r̄dq‖ = ‖r̄dq‖, it

can be shown that ‖ū‖ is upper bounded by | ω | Ts‖r̄αβ‖ =
| ω | Ts‖r̄dq‖, since

‖ū‖ =
∥∥∥−(I−T−1

dq (ωTs))r̄αβ

∥∥∥ ≤ | ω | Ts‖r̄αβ‖ (18a)

1− (ωTs)
2/2 ≤ cosωTs (18b)

is always true. Thus, the condition

‖ū‖ ≤ | ω | Ts‖r̄αβ‖ = | ω | ‖r̄dq‖ < 1/
√
3− b (19)

implies ‖ū‖ < 1/
√
3− b⇔ ū ∈ ball(Vd 
 B) ⊂ Vd 
 B,

where ball denotes the Chebyshev ball. �
This result formalizes that a reference vector needs to sat-

isfy the well-known voltage, i.e. flux constraint |ω| ‖rdq‖ <
( 1√

3
− b)vc at all time. A small robustness parameter b is typi-

cally used to prevent the system form attempting to operate on
or beyond the voltage limit due to model uncertainties [4], [14].
The voltage constraint is typically satisfied at low speed but it
implies that field weakening is required to operate a machine at
high speeds.

IV. CONSTRAINED STABILIZABILITY WITH FCS

Using the FCS input constraints, the closed-loop system can-
not converge to the origin in general. Since the FCS is an
integer input set, there exists a limit how close state x can be
driven toward the origin by feasible inputs u ∈ Us. In other
words, a Lyapunov function value cannot be decreased beyond
a certain value. Thus, the closed-loop system is set stable at
best. Set stability means that the state converges to a set D
containing the origin, where it remains ultimately bounded.
The set stabilizability of the FCS system is analyzed using the
candidate CLF

Γ(x)
def
= ‖Hx‖∞ (20)

where H is defined in (15). The candidate CLF Γ(x) is positive
definite and radially unbounded. This function has hexagonal
sublevel sets

Ω(γ) =
{
u ∈ R

2 | Hx ≤ γ
}

(21)

which are similar to (14). Let us now introduce the concept of
preset [17], [24] to derive system properties.

Definition 1: The preset O(Ω(γ)) ⊂ R
2 is the set of states

x ∈ R
2 which can be driven by an admissible control input u ∈

Us to the set Ω(γ) ⊂ R
2, i.e.,

O(Ω(γ))
def
=

{
x ∈ R

2 | ∃u ∈ Us : x+ u ∈ Ω(γ)
}
. (22)

The preset can be computed for the sublevel set Ω(γ) and the
dynamics (7) according to Definition 1

O(Ω(γ)) =
{
x ∈ R

2 | ∃u ∈ Us : x+ u ∈ Ω(γ)
}

=
{
x ∈ R

2 | ∃y ∈ Ω(γ), ∃u ∈ Us : x = y − u
}

= Ω(γ)⊕ (−Us). (23)

Fig. 3. Preset O(Ω(γ)).

A useful interpretation of the Minkowski sum ⊕ is that it is
the union of all translated copies of Ω(γ) by the vectors of
(−Us) [23]

O(Ω(γ)) =
⋃

uιιι∈Us

(Ω(γ)− uιιι) =
⋃

vιιι∈Vs

(Ω(γ)− vιιι) + ū.

Thus, the preset is the union of 23 = 8 polytopes, which is
shown in Fig. 3. The properties of this set depend on the
size of Ω(γ). It is noted that the vectors v100, . . . ,v011 have
length 2/3 due to the normalization with Λr in (7). If γ < 1√

3
,

then O(Ω(γ)) is nonconvex, which is portrayed in Fig. 3(a).
If γ is further reduced, then the polytopes forming O(Ω(γ))
are not even connected. If γ ≥ 1√

3
, then adjacent polytopes

forming O(Ω(γ)) overlap such that the resulting O(Ω(γ)) is
convex. This case is shown in Fig. 3(b) and the resulting set is
described by

O(Ω(γ)) =

{
x ∈ R

2 | Hx ≤ γ +
1√
3

}
+ ū

= Ω(γ)⊕ (−Vd) + ū = Ω(γ)⊕ (−Ud). (24)

Thus, the following result can be obtained.
Proposition 2: Let ū ∈ Vd 
 B and u ∈ Us then Ω(γ)⊕

B ⊂ O(Ω(γ)) for all γ ≥ 1√
3

.

Proof: First, let us find the largest set Υ that is always
contained in the preset

Υ ⊂ O(Ω(γ)) ∀ū ∈ Vd 
 B (25)

where the size of B is defined by b ∈
(
0, 1√

3
− Γ(ū)

]
. If γ ≥

1√
3

, then O(Ω(γ)) = Ω(γ)⊕ (−Vd) + ū according to (24).
Hence, Υ can be written as the intersection of all translated
copies

Υ =
⋂

ū∈Vd�B
(Ω(γ)⊕ (−Vd) + ū) (26)

which is known as the Pontryagin (Minkowski) difference [23]

Υ = (Ω(γ)⊕ (−Vd))
 (Vd 
 B). (27)

Due to the specific structure of these sets we obtain

Υ =

{
u ∈ R

2 | Hu ≤ γ +
1√
3
−
(

1√
3
− b

)}
(28)

or Υ = Ω(γ)⊕ B and we conclude Ω(γ)⊕ B ⊂ O(Ω(γ)). �
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Thus, any sublevel set Ω(γ) with γ ≥ 1√
3

belongs to the strict
interior of its preset O(Ω(γ)) with some robustness margin (if
ū ∈ Vd 
 B). If γ < 1√

3
, this properties do not hold in general,

which is shown in Fig. 3(a). Proposition 2 can be used to derive
a CLF [26].

Proposition 3: Let ū ∈ Vd 
 B then ∃u ∈ Us such that

Γ(x+ u)−max

(
Γ(x),

1√
3
+ b

)
≤ −b. (29)

Proof: Let ū ∈ Vd 
 B. The set Ω( 1√
3
) = Vd is control

invariant [17] since Vd ⊆ O(Vd). Thus, for every x ∈ Vd exists
a admissible input such that x+ u ∈ Vd, i.e., ∃u ∈ Us

Γ(x+ u)− 1/
√
3 ≤ 0 ∀x ∈ Vd. (30)

The Proposition 2 applies for larger sublevel sets Ω(γ) ⊇ Vd ⊕
B. It implies we can find a set such that x ∈ ∂(Ω(γ)⊕ B) and
an admissible input exists such that x+ u ∈ Ω(γ). Hence, there
∃u ∈ Us such that

Γ(x+ u)− Γ(x) < −b ∀x ∈ R
2 \ Vd. (31)

Any state x ∈ (Vd ⊕ B) \ Vd can be steered to Vd but typically
not with the −b margin, which yields (29). �

According to Proposition 3, the value of a candidate CLF can
be decreased robustly for all x ∈ R

2 \ Vd. Thus, any state x ∈
R

2 \ Vd can be steered toward the set Vd. Moreover, for all x ∈
Vd there exists an u ∈ Us such that x+ u ∈ Vd. As a conse-
quence, there exists a sequence u(0), u(Ts), . . . , u(kTs), . . . ∈
Us such that

lim
k→∞

x(kTs) ∈ D def
= Vd (32)

and the FCS system is said to be global and robust asymptoti-
cally set stabilizable. An illustration of CLF sublevel sets and
their presets is shown Fig. 4.

Choosing the robustness parameter, i.e., limiting ū ∈ Vd 

B ⊂ intVd, is a design decision. According to Proposition 1,
ū is a rotating vector that needs to satisfy the voltage limit
| ω | ‖rdq‖ < vc√

3
. Increasing b requires field weakening to

start earlier and reduces the available maximum torque at high-
speed operation. Hence, choosing b is a trade-off between
robust convergence and exploiting the maximum terminal
voltage at high-speed operation. However, field weakening
algorithms also maintain a voltage margin due to robustness
considerations in practice [14]. This margin can be used to
choose b. Optionally, robustness can be maximized using a
variable b, e.g., using different values for low- and high-
speed operation or choose it according to its maximum b =
1√
3
− Γ(ū).

V. CONSTRAINED STABILIZABILITY WITH CCS

The CCS input constraint is a superset of the FCS, i.e., Us ⊂
Ud. Hence, the CCS system inherits the stability properties of
the FCS system. However, the CCS system is able to converge

Fig. 4. FCS-MPC candidate CLF applying a positive torque step of 1 pu
at 0.5 pu speed: (top) presets O(Ω(γ)) with infinitesimal b; and (bottom)
robust presets O(Ω(γ))� B with largest admissible B defined by b =
1√
3
− Γ(ū).

to the origin and stronger stability properties can be derived.
The CCS preset is defined according to Definition 1

O(Ω(γ)) = Ω(γ)⊕ (−Ud). (33)

Hence, the following can be said.
Proposition 4: Let ū ∈ Vd 
 B and u ∈ Ud then Ω(γ)⊕

B ⊂ O(Ω(γ)) for all γ ≥ 0.

Proof: The proof is similar to the proof of Proposition 2
considering (33). �

For CCS, any sublevel set Ω(γ) with γ ≥ 0 belongs to the
strict interior of its preset O(Ω(γ)) with some robustness mar-
gin (if ū ∈ Vd 
 B). Thus, a CLF can be defined with extended
stability properties at the origin.

Proposition 5: Let ū ∈ Vd 
 B then ∃u ∈ U such that

Γ(x+ u)−max (Γ(x), b) ≤ −b. (34)

Proof: The proof is similar to the proof of Proposition 3
considering Proposition 33. �

According to Proposition 5, the value of a candidate CLF can
be decreased robustly for all x ∈ R

2. Thus, any state x ∈ R
2

can be steered toward the origin and there exists a sequence
u(0), u(Ts), . . . , u(kTs), . . . ∈ Ud such that

lim
k→∞

x(kTs) = 0 (35)

and the CCS system is said to be global and robust asymptoti-
cally stabilizable.
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Fig. 5. Software in the Loop (SiL) validation: MPC using the cost function (38) with horizon N = 4 and tuning parameter q = 10−2 (heavy penal-
ization of input variations, i.e., switching) applying a 2 pu (field weakening) speed steps and ±0.25 pu load torque steps; curves: speed ω, current
idq , voltage vdq ; Lyapunov function Γ(·); speed and current reference values are dashed.

It is noted that the CCS system is compatible also with dif-
ferent Lyapunov functions, e.g., ‖x‖g with g ∈ {1, 2,∞} [25].
However, they cannot be used with FCS and are not omitted due
to shortness.

VI. MODEL PREDICTIVE CONTROL

MPC is defined by the CFTOC problem [17]. Considering
the Lyapunov-based MPC approach [27], [28], the following
CFTOC is defined

minimize
u0,...,uN−1

J(·) (36a)

subject to xj+1 = xj + uj (36b)

uj ∈ Uj
def
= V − ūj (36d)

Γ(x0 + u0)−max (Γ(x0), γ̄ + b) ≤ −b (36d)

where γ̄ = 1√
3

for FCS; γ̄ = 0 for CCS; and b ∈ (0, 1√
3
−

Γ(ū)]. The CLF constraint (36d) requires the first input u0 to
be stabilizing. Optionally, this constraint can be modified such
that the entire input uj sequence is stabilizing.

The cost function (36a) defines the control goals taking N ∈
N>0 future time steps into account, which is called the pre-
diction horizon. It is assumed to be globally defined and does
not impose hard constraints (e.g., barrier functions [29]). The
cost function is minimized taking constraints into account. The
optimization problem satisfies the plant dynamic due to (36b),
which is parametrized with the state measurement x0 = x. The
input constraints are taken into account by (36c), which is
parametrized by the sequence ū0, . . . , ūN−1. The notation .j
is introduced for the open-loop predictions at a give sampling
instant with j ∈ {0, . . . , N}.

The CFTOC (36) is solved by an input U
def
= [u′0, . . . , u

′
N−1]

′

and state sequence X
def
= [x′1, . . . , x

′
N ]′ that are said to be feasi-

ble, if they satisfy the CFTOC constraints. Moreover, U� and
X� are the optimal sequences that yield J(x0,U�) ≤ J(x0,U)

Fig. 6. Software-in-the-loop (SiL) validation: MPC with (solid) and with-
out (dashed with markers) CLF constraint using the cost function (38):
Lyapunov function Γ(·) and execution time Tx mean values obtained
from testing conditions in Fig. 5.

for all feasible U. Thus, the CFTOC (36) is said to be feasible if
at least one feasible sequence U and X can be found. Moreover,
it is said to be persistently feasible if it is feasible for all future
time steps.

Proposition 6: If ūj ∈ Vd 
 B, then the CFTOC (36) is
feasible for all x0 ∈ R

2.

Proof: If ūj ∈ Vd 
 B, then an input uj ∈ Uj exists that
satisfies (36b), (36c), and (36d) due to Proposition 3 (for FCS)
and Proposition 5 (for CCS). �

The CFTOC (36) is parametrized by the sequence
ū0, . . . , ūN−1 (in addition to x0). However, the evolution of ū,
i.e., r̄dq and ω, is rarely available and typically approximated
with constant sequences [30], [31]

ūj ≈− (I−T−1
dq (ω0Ts))T

−1
dq (ε+ jω0Ts)r̄dq,0. (37)

In this case, the Proposition 6 simplifies as follows.
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Fig. 7. Experimental validation: (left) 300 r/min speed steps and (right) 20 Nm load torque steps using MPC with CLF and cost function (38) with
horizon N = 2 and tuning parameter q = 0; curves: speed ω, current idq , flux λdq ; Lyapunov function Γ(·).

Corollary 1: Let ω0 = · · · = ωN and r̄dq,0 = · · · = r̄dq,N
and ū0 ∈ ball(Vd 
 B), then the CFTOC (36) is feasible for all
x0 ∈ R

2.

Proof: If ωj and r̄dq,j are constant, then ‖r̄αβ,j‖ and ‖ūj‖
are constant. Thus, ū0 ∈ ball(Vd 
 B) implies ūj ∈ ball(Vd 

B) for all j ∈ [0, N ] and Propositions 6 holds. �

MPC computes U� at each time step. Then, the first of the
optimal input is applied to the plant u

def
= u�0 and algorithm waits

until the next sampling instant. This policy defines an implicit
feedback control law, i.e., a closed-loop control system, that can
be analyzed for stability.

Theorem 1: Let ūj ∈ Vd 
 B for all future time steps, MPC
solves the CFTOC (36) at each time step and applies u(kTs) =
u�0 to the plant. Then, the resulting closed-loop system is global
and robust asymptotically stable using U = Ud (for CCS) and
asymptotically set stable using U = Us (for FCS).

Proof: If ūj ∈ Vd 
 B for all future time steps, the
CFTOC (36) is persistently feasible and produces an optimal
input sequence U. The first input satisfies the (candidate) CLF
constraint (36d) and is applied to the plant. Hence, the closed-
loop system inherits the stability properties of the CLF. �

VII. IMPLEMENTATION AND RESULTS

Lyapunov-based MPC is implemented using the reference
cost function (any other cost function can be used for valida-
tion) with delta input

J(·) def
=

N−1∑
j=0

(
x′j+1Qxj+1 +Δv′jRΔvj

)
(38)

where Δv̄j = v̄j − v̄j−1, which can be interpreted as a switch-
ing penalization for FCS (the subscript .αβ is neglected for
compactness). The components of xj are the α and β flux error
that are decoupled from each other and should be weighted
with equivalent importance. Thus, the matrices are simplified
as Q

def
= qI and R

def
= I. The tuning parameter q ∈ R>0 can be

interpreted as gain. Hence, the CFTOC (36) is rewritten in
simplified form

minimize
v0,...,vN−1

N−1∑
j=0

(
qx′j+1xj+1 +Δv′jΔvj

)
(39a)

subject to λ̄j+1 = λ̄j + v̄j (39b)

xj = λ̄j − r̄j ; v̄j ∈ V (39c)

Γ(xj)−max (Γ(xj), γ̄ + b) ≤ −b. (39d)

It can be shown that Lyapunov-based MPC yields also
implementation benefits compared to standard MPC that are
discussed under another cover for compactness [25].

To validate Lyapunov-based MPC, it is compared to MPC
without CLF constraint. First, the concepts are tested on a SiL
platform that allows us to precisely control initial conditions,
sensor noise, and remove real-time constraints to investigate
long horizons. In Fig. 5, results are shown using q = 10−2 and
N = 4. In these conditions, MPC without CLF does not con-
verge but Lyapunov-based MPC provides satisfactory control
performance. Lyapunov-based FCS-MPC satisfies the termi-
nal constraint in steady-state conditions. As expected, the
Γ(·) exceeds 1√

3
only when a large reference step is applied.

Lyapunov-based CCS-MPC yields a lower Γ(·) in general.
However, the value is nonzero even in steady-state conditions
due to simulated nonlinear behavior of the model (dead-times
and sensor noise). The test has been repeated varying the tuning
parameter q = 10{−2,1,2,4} and prediction horizonN . In Fig. 6,
the mean values of Γ(·) and the execution time Tx are shown
as a function of N . Lyapunov-based FCS-MPC can exploit the
CLF constraint (applied to each prediction step) to optimize
Tx [25].

MPC with and without CLF and prediction horizon
N = 2 is combined with a delay observer [25] and imple-
mented on the experimental IPM test bench with dSpace
Microautobox II; dc-link voltage vc = 300 V; rated current
Ir = 10 Ap; and parameters: pole pairs p = 5, inductanceLd =
10.5 mH, Lq = 12.9 mH, PM flux ψ = 342 mWb, and shaft
inertia J = 8.7× 10−3 kg m2. CCS-MPC is implemented as
explicit MPC and results in a code execution time of 1.9 µs;
FCS-MPC is implemented using an enumeration strategy that
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Fig. 8. Oscilloscope screenshot of MPC with CLF: line-to-line voltage,
phase current, and current FFT (0 Hz to 20 kHz range) at switching
frequency fsw ≈ 2.5 kHz (sampling frequency fs = 5 kHz for CCS-MPC
and fs = 20 kHz for FCS-MPC), dc-link voltage vc = 300 V, rotational
speed n = 300 r/min.

Fig. 9. Steady-state control error at switching frequency fsw ≈ 2.5 kHz
(sampling frequency fs = 5 kHz for CCS-MPC and fs = 20 kHz for
FCS-MPC), dc-link voltage vc = 300 V, rotational speed n = 300 r/min.

results in an execution time of 2.8 µs. Both execution times are
given for MPC only, i.e., without considering speed control or
sensor reading. The transient response of MPC with CLF con-
straint and q = 0 is validated applying 300 r/min positive and
negative speed reference steps and 20 Nm load torque steps in
Fig. 7 using a PI speed controller with clamping antisaturation
technique. The results show the fast transient response expected
by MPC and confirm the findings of the SiL evaluation showing
the effectiveness of the robust CLF constraint. Choosing q = 0
means not penalizing the control error in the cost function and
reference tracking is only performed by the CLF constraint. For
obvious reasons, MPC without CLF cannot work in the same
conditions. The steady-state performance of MPC with CLF
constraint is shown in Figs. 8 and 9. Both FCS-MPC and CCS-
MPC achieve approximately the same switching frequency and
current ripple in both cases but differ in terms of current spec-
trum. CCS-MPC achieves the typical PWM harmonics while
FCS-MPC has a more random ripple with approximately white
noise spectrum. Using FCS-MPC with CLF, the error x is guar-
anteed to converge to D def

= Vd that is shown in Fig. 9(a) and
(b). The error can converge to a subset of D for large q [see
Fig. 9(a)] but this cannot be guaranteed in general. CCS-MPC
converges to the origin as it is shown in Fig. 9(c) (CCS-MPC
does not “see” the current ripple due to PWM).

Due to the formulation in the normalized flux space, the
MPC formulation itself is parameter independent. However,
the flux and flux reference are computed based on the current
values using the current–flux relationship. Thus, the effect of

Fig. 10. Experimental validation of the parameter robustness of MPC
with CLF constraint: over and underestimation of the machine induc-
tance by a factor of 100 (300 r/min speed steps) and low-speed test
neglecting phase resistance (10 r/min speed steps; encoder quantiza-
tion is 0.75 r/min).

an inductance mismatch is evaluated in Fig. 10. It is shown that
even a Ld and Lq mismatch by a factor of 100 has no signif-
icant effect on Lyapunov-based MPC. Similar results can be
shown for ψ. The phase resistance was found to have a limited
to no effect throughout simulation and was neglected during
experimental testing. A low-speed test is shown in Fig. 10
where the resistive voltage drop is significant compared to
the terminal voltage. Overcompensating the resistive voltage
drop by a factor of 10 yields to a matching result (not shown
due to compactness). Overcompensation beyond that factor can
reverse the sign (or more generally the direction) of the terminal
voltage at low speed (in CCS-MPC) and triggered overcurrent
events during testing. Summarizing, the testing shows that the
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proposed Lyapunov-based MPC is (sufficiently) robust. In prac-
tice, much better parameter knowledge is needed for MTPA
tracking, field weakening, or sensorless control. It is further
noted that Lyapunov-based MPC was validated for high-speed
operation [14], where Lyapunov-based MPC is used to validate
the constrained-MTPA concept.

VIII. CONCLUSION

This paper has proposed a novel Lyapunov-based MPC
scheme for PMSM drive systems. The concept adds a CLF con-
straint and the resulting system is shown to have global and
robust stability properties. CCS MPC uses a modulation scheme
(SVM/PWM) and yields a closed-loop system that is asymptot-
ically stable. FCS MPC applies the switching states directly and
results in a asymptotically set stable closed- loop system.

The associated CFTOC problem is formulated in the nor-
malized αβ stator flux space that yields a simple dynamic
model (integrator), time invariant constraints (voltage vectors,
hexagon), but requires a time-varying (rotating) control ref-
erence. The control scheme proposes the elimination of the
flux–current mapping from the MPC formulation. The current–
flux mapping is implemented in the controller as a nonlinear
gain. An arbitrarily complex description of this mapping can
be used and implemented as a LUT to take saturation and
cross-saturation into account. Using an affine approximation,
the model accuracy deteriorates to the one obtained with the
conventional PMSM model.
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