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Abstract—This work introduces high performance filter techniques for
direct position and speed estimation to augment its robustness against
disturbances. The direct estimation concept provides an independent po-
sition and speed estimate at each sampling instant by solving an opti-
mization problem parameterized with the current, current derivative, and
voltage of the same sample. It can operate at any speed employing a
voltage injection at low speed or pwm current derivative. A selective filter
concept is proposed that discards samples lacking robustness based on
cost function properties. The concept is most effective in removing worst
case errors and should always be applied. Also, output filter techniques
are investigated to improve the estimates. A finite impulse response (fir)
structure is proposed that filters estimates according to a least-square
criterion and is effective in reducing average estimation errors. The fir
filter is benchmarked against an enhanced dual-pll filter, which is enabled
by direct estimation. The fir and dual-pll filters are found to have a 6.8kHz
and 1kHz practical bandwidth, respectively, while achieving a <1% absolute
mean position and speed estimation error. Hence, they perform one to
two orders of magnitude better than traditional estimation schemes, which
typically achieve <100Hz bandwidth at similar errors.

Index Terms—Estimation, Motor Drives, Numerical Stability, Optimiza-
tion Methods, Robustness

I. Introduction

SYNCHRONOUS motor drives require an accurate rotor
position and speed information for high performance control.

Position sensorless estimation schemes have been introduced
to remove the cost of a resolver or encoder and improve their
reliability by removing a single point of failure. These arguments
are especially compelling in mass-produced drive systems, e.g. in
hybrid and electric vehicles, when the machine is physically distant
from the motor controller, e.g. pumps for underground mining or
wind power plants with converter at the tower base, the available
space for a motor drive is restricted, e.g. low power drives, or a
drive system operates in hazardous or clean environments, where
physical contact between stator and rotor is undesired.

Position sensorless estimation schemes are typically classified
in high speed methods and zero speed methods. High-speed
methods use predominantly the back-emf information [1]–[4]
and can be formulated as flux observers [5], [6], sliding mode
observers [7], [8], extended Kalman filters (ekf) [9], [10], and
adaptive observers [11], [12]. Zero speed methods introduce a
perturbation to identify the rotor position in anisotropic machines.
Estimation schemes for pwm control inject a high frequency
signal and demodulate the machine response for rotor position
information using filters [13]–[15]. Direct motor control schemes
without pwm require dedicated implementations that can exploit
the current ripple [16], [17]. These estimation methods can be
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combined to achieve position sensorless control at any speed but
require a cross-over between the zero and high speed method
[18], [19], which can be challenging during fast transients. Finally,
even methods intended for highly dynamic conditions require
filtering by limiting the estimation gains [20] or a phase-locked
loop (pll) [3] for stable operation. In literature, the bandwidth
of position sensorless strategies is often not specified. Where
it is provided, it ranges typically between 20-50Hz and rarely
exceeds 100Hz by a relevant margin [3], [13]–[15], [21]. This
paper proposes strategies to significantly improve the dynamic
capabilities of position sensorless estimation while retaining a
low error due to disturbances.

Direct position and speed sensorless estimation obtains an
independent position and speed estimate by solving a nonlinear
optimization problem. The concept is based on [22], [23] (without
pll filters), that yields: (i) “instantaneous” estimation by extracting
a position and speed estimate from the measurements of one
sample (two samples if the current derivative is computed
from two adjacent samples), (ii) a single scheme for low and
high speed position estimation, (iii) compatibility with any
perturbation, i.e. any signal injection technique or exploiting
the current ripple, for low speed estimation, (iv) compatibility
with nonlinear motor models that account for saturation. The
concept consists in identifying the position and speed based on
a least squares formulation of the dynamic model parametrized
with the measurements of one sample. The resulting cost function
is nonlinear in the estimates and is solved numerically in real
time. This approach (with added pll filtering) has been studied
for applications that require high dynamic torque control, e.g.
belt-starter-generator drives that must crank an engine or electric
vehicle traction motor drives. It was combined with pwm control,
e.g. vector control or convex control set model predictive control
(ccs-mpc) [22], which uses a high frequency perturbation for
low speed estimation, and direct control, e.g. finite control set
model predictive control (fcs-mpc) [23], which uses the inherent
random switching ripple for low speed estimation. It can also
take magnetic saturation into account [24] and can be applied to
induction motors [25]. A block diagrams is shown in Fig. 1.

This paper studies filter strategies for direct position estimation
since its inherent noise behavior may not be acceptable for some
applications [26]–[28]. Initially, it is shown empirically that the
direct estimation robustness against disturbances depends on the
robustness factor 𝜌, which describes the convexity of the cost
function. The nonlinear cost function is time-varying since it is
parameterized at each time instant with the motor currents and
terminal voltage. If it lacks convexity, even limited noise can result
in large estimation errors. We show that the robustness factor
is typically high at high speed. At low speed, the robustness
factor tends to zero unless a perturbation strategy is used to
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maintain a minimum value (on average). However, it is difficult
to guarantee a minimum robustness factor. Hence, a selective
filter strategy is proposed that discards samples below a threshold,
i.e. minimum robustness factor. This concept is shown to be most
effective to discard the worst case samples and a small threshold
should always be applied. Increasing the threshold value eventually
becomes ineffective. At even higher thresholds, selective filtering
may discard a large number or even majority of the estimates
and the estimation process deteriorates rapidly.

Since direct estimation issues an independent position and
speed estimates at each time instant, output filter strategies
can be applied that reduce noise by linking an estimate to past
𝑁 estimates. A finite impulse response (fir) filter is proposed
that solves a least-squares statement. First, the filter fits the
position and speed estimate to the equation ̇𝜃 = 𝜔, which is not
guaranteed by direct estimation. Second, the speed is assumed
to vary at most linearly over the past 𝑁 samples, which holds
assuming that 𝑁 is reasonably small. Based on these conditions,
the fir filter interpolates a position and speed sequence in the
least-squares sense. The result is shown to decrease estimation
noise with no compromise in terms of dynamics up to 𝑁 = 5
and a limited decrease of dynamic performance at higher 𝑁.
Furthermore, a dual-pll concept is proposed, which uses a second
parallel speed loop enabled by the independent speed estimate of
direct estimation. The concept is derived from dual-pll strategies
that improve the position measurement quality of (low resolution)
encoders [29], [30] or remove harmonics [31]. The dual-pll has
a 1kHz estimation bandwidth, which is more than a factor 10
higher than a conventional pll (50Hz [22], [23]). It acts as a
benchmark reference to the fir filter, which achieves a 6.8kHz
bandwidth at similar absolute mean estimation errors (<1%).

This paper is organized a follows. The direct position and
speed estimation concept is introduced in Section II. The output
filtering concepts are discussed in Section III and the filters are
evaluated in Section IV.

II. Direct Position and Speed Estimation

A. Direct Estimation Concept

Direct parameter estimation targets the estimation of the
unknown parameters 𝑧 ∈ ℤ ⊆ ℝ𝑙 from the nonlinear dynamic
system ̇𝑥 = 𝑓 (𝑥, 𝑢, 𝑧) + 𝑤, with states 𝑥 ∈ 𝕏 ⊆ ℝ𝑛 and inputs
𝑢 ∈ 𝕌 ⊆ ℝ𝑚 in presence of an unknown bounded disturbance
𝑤 ∈ 𝕎 = {𝑤 ∈ ℝ2 | ‖𝑤‖ ≤ 𝑊} at time instant 𝑡. For simplicity
of notation, this paper refers to a continuous-time derivative ̇𝑥,
which is obtained from two adjacent 𝑥 in sampled systems. We
assume that 𝑓 ∶ 𝕏 × 𝕌 × ℤ × 𝕎 → ℝ𝑛 is smooth and the sets
𝕏, 𝕌, ℤ, and 𝕎 are convex. Direct estimation uses the known
states 𝑥 and inputs 𝑢 to generate an estimate ̂𝑧 = 𝑧 + ̃𝑧, where ̃𝑧
is the estimation error. The residuals of the dynamic system

𝑟( ̂𝑧) = 𝑓 (𝑥, 𝑢, ̂𝑧) − ̇𝑥 + 𝑤, (1)

act as a qualifier of an estimate ̂𝑧. For 𝑤 = 0, 𝑟( ̂𝑧) = 0 is
a necessary condition such that ̂𝑧 = 𝑧, i.e. ̃𝑧 = 0. In these
conditions, ̂𝑧 = 𝑧 implies 𝑟( ̂𝑧) = 0 but the reverse is not true
in general and additional provisions are necessary. Since 𝑤 ≠ 0,
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Fig. 1. Vector control (with Constrained-MTPA [33]) using direct position and speed
estimation (an optional external speed-loop can be added). A rotating high-frequency
voltage perturbation is added at low speeds. the perturbation magnitude is linearly scaled
to zero as the speed magnitude increases.

direct parameter estimation fits the parameters in a nonlinear least
squares sense with the optimization problem

̂𝑧⋆ = arg min
̂𝑧∈𝒟

𝑐( ̂𝑧) = ‖𝑟( ̂𝑧)‖2 = 𝑟( ̂𝑧)′𝑟( ̂𝑧), (2)

with cost function 𝑐 ∶ ℤ → ℝ and search domain 𝒟 ⊆ ℤ. At the
time of solving (2), 𝑤 is unknown and assumed to be zero.

For estimation purposes the optimizer ̂𝑧⋆ has to be unique,
which is provided if 𝑐( ̂𝑧) is strictly convex on 𝒟 [32]. In these
conditions, ̂𝑧⋆ = 𝑧 assuming that 𝑤 = 0. Any disturbance 𝑤 ≠ 0
will inevitably result in a nonzero estimation error, i.e. ‖ ̂𝑧⋆ −
𝑧‖ > 0. However, it can be shown that ‖ ̂𝑧⋆ − 𝑧‖ < 𝑍𝑤 for any
bounded disturbance ‖𝑤‖ < 𝑊 if 𝑐( ̂𝑧) is strictly convex on 𝒟.
The search domain 𝒟 can be computed explicitly but the required
programs are np-hard for nonlinear systems in general. Hence, its
computation can be replaced with convexity checks in real-time
implementations.

B. Synchronous Machine Model

For control purposes, the armature (stator) flux and currents
of synchronous machines, i.e. permanent magnet (pmsm), wound-
rotor (without damper windings), and reluctance machines (rsm)
is linked using the 𝑑𝑞 reference frame [33], [34]

𝜆𝑑𝑞 = 𝑙 ∘ 𝑖𝑑𝑞 ≈ L𝑖𝑑𝑞 + 𝜓𝑟, (3)

where 𝑙 ∶ ℝ2 → ℝ2 is the nonlinear map that links 𝑑𝑞 current
and flux globally. The nonlinear map can be computed using
finite element analysis (fea) or measured experimentally. For
control purposes, this relation is often approximated by an affine
map with parameters L = diag[𝐿𝑑, 𝐿𝑞] and 𝜓𝑟 = [𝜓, 0]′, where
𝐿𝑑 and 𝐿𝑞 are the 𝑑 and 𝑞 axis inductances and 𝜓 is the rotor
flux magnitude, and ′ denotes the transpose operator. We assume
that the affine approximation is a fit with reasonable accuracy,
e.g. using optimized parameters [33].

The implicit position dependence of the 𝑑𝑞 reference frame
is made explicit by transforming into the static 𝛼𝛽 system with
the Park transformation P(𝜃) = [[cos 𝜃, − sin 𝜃]′, [sin 𝜃, cos 𝜃]′],
which is orthogonal (P−1(𝜃) = P′(𝜃)),

𝜆𝛼𝛽 = P′(𝜃)LP(𝜃)𝑖𝛼𝛽 + P′(𝜃)𝜓𝑟. (4)
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where 𝜆𝑑𝑞 = P(𝜃)𝜆𝛼𝛽 and 𝑖𝑑𝑞 = P(𝜃)𝑖𝛼𝛽. Deriving this
expression with respect to time results in the dynamic synchronous
machine model

̄𝑣𝛼𝛽 = (𝐿ΣI + 𝐿ΔP̄(2𝜃)) ̇𝑖𝛼𝛽 + 2𝐿Δ𝜔JP̄(2𝜃)𝑖𝛼𝛽 + 𝜔JP(𝜃)′𝜓𝑟,
(5)

where 𝐿Σ = (𝐿𝑑 + 𝐿𝑞)/2 and 𝐿Δ = (𝐿𝑑 − 𝐿𝑞)/2 is the sum and
difference inductance [22], respectively. The compensated terminal
voltage ̄𝑣𝛼𝛽 = �̇�𝛼𝛽 = 𝑣𝛼𝛽 −Δ𝑣𝛼𝛽 is the terminal voltage applied
by control 𝑣𝛼𝛽 compensated with the effective voltage drop Δ𝑣𝛼𝛽
due to the stator resistance, inverter on-voltage drops, and dead-
times [34]. The Δ𝑣𝛼𝛽 term is related to the power losses in the
current conduction path. It is typically a few percent of 𝑣𝛼𝛽 and
can be approximated with lookup tables or analytical models [34]
without knowledge of 𝜃 or 𝜔. The matrices J = [[0, 1]′, [−1, 0]′]
is a 𝜋/2 rotation, ̄I = [[1, 0]′, [0, −1]′], and P̄(𝜃) = P′(𝜃) ̄IP(𝜃).

C. Direct Position and Speed Estimation

Direct position and speed estimation uses the dynamic model
(5) to issue estimates. The numerical performance of the cost
function is improved by normalizing the estimates with ̂𝑧 =
[ ̂𝜃/Θ, �̂�/Ω]′, where Θ = 𝜋 is the rated position and Ω ∈ ℝ>0
is the base speed. The estimates describe the parameters 𝑧 =
[𝜃/Θ, 𝜔/Ω]′ with estimation error ̃𝑧 = ̂𝑧−𝑧 = [ ̃𝜃/Θ, �̃�/Ω]′. The
residual function (1) results from (5) defining the state 𝑥 = 𝑖𝛼𝛽
and input 𝑢 = ̄𝑣𝛼𝛽,

𝑟( ̂𝑧) = (𝐿ΣI + 𝐿ΔP̄(2 ̂𝜃)) ̇𝑖𝛼𝛽 (6)
+ 2𝐿Δ�̂�JP̄(2 ̂𝜃)𝑖𝛼𝛽 + �̂�JP( ̂𝜃)′𝜓𝑟 − ̄𝑣𝛼𝛽

where ̇𝑖𝛼𝛽, 𝑖𝛼𝛽, and ̄𝑣𝛼𝛽 are known at any sampling instant. The
cost function follows immediately by substituting (6) into (2).

The estimation problem (2) is solved numerically in real-time.
The solver starts at a guess ̂𝜃𝑔 and �̂�𝑔 that is typically chosen as
the (extrapolated) estimate of the previous sample. Throughout this
research, we use a Newton solver that updates the estimate using
the Newton step Δ𝑧 = 𝛾ℋ−1

𝑐 (⋅)∇𝑐(⋅), where ℋ−1
𝑐 (⋅) ∈ ℝ2×2

is the Hessian and ∇𝑐(⋅) ∈ ℝ2 is the gradient of the cost and
𝛾 is the step-size [22], [23]. The solver stops either when the
a convergence criterion is satisfied (typically ‖∇𝑐(⋅)‖ ≤ 𝜖 with
𝜖 ∈ [10−2, 10−5]) or the maximum number of iterations 𝑀 is
reached (typically 𝑀 ∈ [1, 5]). In practice, the solver may not
converge at some samples. In such events, the solver returns
the initial guess since ̂𝜃⋆ = ̂𝜃𝑔 and �̂�⋆ = �̂�𝑔 is preferable to a
random result.

To obtain a meaningful estimate, the cost function must be
strictly convex in a neighborhood of the origin, which depends on
̇𝑖𝛼𝛽, 𝑖𝛼𝛽, ̄𝑣𝛼𝛽, and 𝜔. This requirement typically holds, except

in steady-state conditions ̇𝑖𝛼𝛽 = 0 at 𝜔 = 0. To prevent position
estimation challenges at 𝜔 = 0, a excitation, i.e. perturbation,
strategy is required. Popular perturbation strategies are the
injection of a pulsating sinusoidal signal along a predefined
𝑑𝑞 axis [22], [35], [36] or a vector that rotates at high-frequency
in the 𝑑𝑞 space [35], [36]. Since the perturbation is needed only
at low speed, the injection magnitude can be reduced as the
speed increases to prevent unnecessary losses [37], [38]. Such
periodic perturbation strategies are beneficial using pwm control.
On the other hand, the switching harmonics are visible to control
strategies that actuate switching states directly such as direct
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Fig. 2. cost function must be strictly convex in a neighborhood of the origin, which
depends on ̇𝑖𝛼𝛽, 𝑖𝛼𝛽, ̄𝑣𝛼𝛽, and 𝜔. This requirement typically holds, except in steady-
state conditions ̇𝑖𝛼𝛽 = 0 at 𝜔 = 0. To prevent position estimation challenges at
𝜔 = 0, a excitation, i.e. perturbation, strategy is required. Popular perturbation strategies
are the injection of a pulsating sinusoidal signal along a predefined 𝑑𝑞 axis [22], [35],
[36] or a vector that rotates at high-frequency in the 𝑑𝑞 space [35], [36]. Since the
perturbation is needed only at low speed, the injection magnitude can be reduced as
the speed increases to prevent unnecessary losses [37], [38]. Experimental result: the
robustness factor 𝜌 provides an upper error bound against disturbances; the (inverse)
correlation with the estimation error is shown on the example of the position error using a
(rotating) rectangular, (rotating) sinusoidal, and no perturbation as a function of speed; the
perturbation magnitude 𝑀 is 200V (blue, solid line), 100V (red, dashed line), and 50V
(yellow, dotted), i.e. 25%, 12.5%, and 6.25% of the dc voltage, at 0rpm and scaled
linearly to zero at 15% of the rated speed

torque control (dtc) [39], [40] or fcs-mpc [3], [23], [41]. Such
controllers never achieve electric steady-state conditions and the
inherent random perturbation is typically sufficient to estimate
position and speed [23], [34]. It is noted that high magnitude, high
frequency perturbations tend to drive currents in the magnetic iron
and pm. These parasitic currents depend on the motor geometry
and result in additional motor losses [42]. Hence, perturbation
magnitudes are typically chosen as a compromise between drive
system efficiency and estimation robustness (Fig. 2).

III. Selective and Output Filter Strategies

Direct estimation issues an independent position ̂𝜃⋆
𝑘 and speed

�̂�⋆
𝑘 estimate at each sampling instant 𝑘𝑇𝑠, where 𝑇𝑠 is the sampling

time. The residual 𝑟𝑘(⋅) and cost 𝑐𝑘(⋅) = ‖𝑟𝑘(⋅)‖2 are parameter-
ized with the state 𝑖𝛼𝛽,𝑘, input ̄𝑣𝛼𝛽,𝑘, and state derivative ̇𝑖𝛼𝛽,𝑘,
which is typically approximated with ̇𝑖𝛼𝛽,𝑘 ≈ (𝑖𝛼𝛽,𝑘+1 −𝑖𝛼𝛽,𝑘)/𝑇𝑠.

However, the estimates can be noisy due to any disturbance 𝑤,
e.g. current sensor noise or inverter nonlinearities such as interlock
times or on-voltage drops. Hence, it is beneficial to introduce
filtering strategies that maintain the high dynamic performance but
prevent that a single “bad” sample results in a large estimation
error. We introduce filtering strategies that issue the filtered
position ̄𝜃⋆

𝑘 and speed �̄�⋆
𝑘 estimates from ̂𝜃⋆

𝑘 and �̂�⋆
𝑘, which is

the result of solving the problem (2).

A. Selective Filtering using Cost Function Properties

The cost function 𝑐𝑘(⋅) is required to be strictly convex on
𝒟𝑘 such that a meaningful estimate can be issued. Hence, this
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concept requires that the cost function is strictly convex in the
estimate, or generalizing strongly convex, i.e. ℋ𝑐𝑘

(𝑧𝑘) ⪰ 𝑚𝑘 > 0,
where 𝑚𝑘 = 𝜆min (ℋ𝑐𝑘

(𝑧𝑘)) is the minimum eigenvalue of the
Hessian evaluated in 𝑧𝑘.

Linearizing the residual 𝑟𝑘(⋅) in 𝑧𝑘, it is possible to link strength
of convexity with the estimation error due to a disturbance.
Introducing the robustness factor 𝜌𝑘 = √𝑚𝑘/2, it can be shown
that ‖ ̃𝑧⋆

𝑘‖ ≤ ‖𝑤𝑘‖/𝜌𝑘 is a tight upper bound on the estimation
error. Since the disturbance magnitude is finite, i.e. ‖𝑤𝑘‖ ≤ 𝑊,
the estimation error magnitude ‖ ̃𝑧⋆

𝑘‖ depends on 𝜌𝑘. This property
is shown empirically in Fig. 2.

In practice, 𝑤𝑘 is unknown. However, the eigenvalues of the
cost function 𝑚𝑘 and therefore 𝜌𝑘 are revealed by the Newton
solver. Since, samples with low 𝜌𝑘 have a poor robustness against
disturbances, it is feasible to selectively filter samples where
𝜌𝑘 < 𝜌𝑚𝑖𝑛. This filtering technique is a simple if statement at
the output of the solver, which replaces each sample lacking
robustness with the initial guess.

B. Finite Impulse Response (FIR) Output Filtering

The problem (2) issues independent estimates ̂𝜃⋆
𝑘 and �̂�⋆

𝑘 at
each sampling instant. These estimates are chosen exclusively
based on the cost function. However, the mechanical system is
subject to constraints as well. For example, the speed cannot
vary arbitrarily fast since it is related to kinetic energy stored in
the mechanical system. Also, the mechanical parameters should
satisfy the equation 𝜃𝑘+1 = 𝜃𝑘 + 𝑇𝑠𝜔𝑘. Hence, it is possible to
introduce a moving-window least-squares fit of the estimates over
the past 𝑁 samples, where 𝑁 is typically small, e.g. a few samples,
to limit the computational complexity.

Over short horizons, the speed can often be assumed to be
constant without excessive errors [34]. In this research, the speed
is assumed to vary linearly over the horizon, i.e. �̂�⋆

𝑘+1 = �̂�⋆
𝑘+𝑎, for

higher accuracy. This requirement can be written as an equation
system that fits the absolute speed

�̂�⋆
𝑘 = 𝑏 (7a)

�̂�⋆
𝑘−1 = 𝑏 − 𝑎 (7b)
… (7c)

�̂�⋆
𝑘−𝑁 = 𝑏 − 𝑁𝑎. (7d)

It is noted that the assumption of a linear speed variation is
exact for 𝑁 = {1, 2} in a sampled system and an approximation
(accuracy decreases as 𝑁 increases), otherwise. It is possible to
increase the accuracy by introducing higher order polynomials
but at the expense of an increased computation complexity.

Furthermore, the estimates should fit the equation ̂𝜃⋆
𝑘+1 =

̂𝜃⋆
𝑘 +𝑇𝑠�̂�⋆

𝑘. This requirement can be written as an equation system
that fits the differential position

̂𝜃⋆
𝑘 − ̂𝜃⋆

𝑘−1 = 𝑇𝑠(𝑏 − 𝑎) (8a)
̂𝜃⋆
𝑘−1 − ̂𝜃⋆

𝑘−2 = 𝑇𝑠(𝑏 − 2𝑎) (8b)
… (8c)

̂𝜃⋆
𝑘−𝑁+1 − ̂𝜃⋆

𝑘−𝑁 = 𝑇𝑠(𝑏 − 𝑁𝑎) (8d)
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Fig. 3. Dual-pll structure: a pll with fast feedback loop (high gain, 𝑘1) is used to
achieve a filtered position estimate �̂�𝑓 with high bandwidth; a pll with slow feedback loop
(low gain, 𝑘2) is used to remove speed offsets with respect to the position increment;
a low-pass filter with bandwidth 𝑘3 is used to filter the speed feed-forward term and
provides the filtered speed estimate �̂�𝑓

Finally, the absolute position results from the integration of the
speed with initial offset. This system results in the requirement

̂𝜃⋆
𝑘 = 𝑐 (9a)

̂𝜃⋆
𝑘−1 = 𝑐 − 𝑇(𝑏 − 𝑎) (9b)
̂𝜃⋆
𝑘−2 = 𝑐 − 𝑇(𝑏 − 𝑎) − 𝑇(𝑏 − 2𝑎) (9c)
… (9d)

̂𝜃⋆
𝑘−𝑁 = 𝑐 − 𝑇(𝑁𝑏 − (1 + 2 + .. + 𝑁)𝑎). (9e)

These systems can be combined and written in matrix form

H𝜉 = 𝐹, (10)

where 𝜉 = [𝑎, 𝑏, 𝑐]′ and 𝐹 = [�̂�⋆
𝑘, … , �̂�⋆

𝑘−𝑁, ̂𝜃⋆
𝑘 −

̂𝜃⋆
𝑘−1, … , ̂𝜃⋆

𝑘−𝑁+1 − ̂𝜃⋆
𝑘−𝑁, ̂𝜃⋆

𝑘, … , ̂𝜃⋆
𝑘−𝑁]′, and

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
−1 1 0
−2 1 0

…
−𝑁 1 0
−𝑇𝑠 𝑇𝑠 0

−2𝑇𝑠 𝑇𝑠 0
−3𝑇𝑠 𝑇𝑠 0

…
−𝑁𝑇𝑠 𝑇𝑠 0

0 0 1
𝑇𝑠 𝑇𝑠 1

3𝑇𝑠 2𝑇𝑠 1
…

𝑛(𝑛+1)
2 𝑇𝑠 𝑁𝑇𝑠 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

The equation system (10) is clearly overdetermined for 𝑁 > 0.
Hence, the variable 𝜉 can be fitted in a least-squares sense. The
result is provided by 𝜉 = H†𝐹, where ⋅† denotes the Moore-
Penrose pseudoinverse. The computation is feasible in real-time
since H is constant and H† can be stored in memory.

The resulting fir solves a least-squares problem over a moving
horizon 𝑁. It issues the fit 𝜉 = [𝑎, 𝑏, 𝑐]′, where 𝑏 = �̂�⋆

𝑓 ,𝑘 and
𝑐 = ̂𝜃⋆

𝑓 ,𝑘 are the filtered position and speed, respectively. For
𝑁 = 0, the fit will return the original values 𝑏 = �̂�⋆

𝑓 ,𝑘 = �̂�⋆
𝑘 and

𝑐 = ̂𝜃⋆
𝑓 ,𝑘 = ̂𝜃⋆

𝑘.

C. Dual Phase-Locked Loop (PLL)

For large 𝑁, the fir filter can become computationally heavy
for real-time implementations since it requires 3𝑁 floating point
multiplications and additions. An alternative is the phase-locked
loop (pll). A pll tracks the position and co-estimates speed
but the latter is typically noisy for high pll gains, i.e. high
pll bandwidths [3]. However, direct estimation provides both
a position and speed signal. Hence, two pll can be used, one
for position and one for speed estimation. A block diagram is
shown in Fig. 3. The position-estimation pll uses the typical
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Fig. 4. Experimental PMSM testbench with parameters outlined in Table I

layout augmented with a speed feed-forward term. The position-
estimation pll relies primarily on the ̂𝜃⋆ input to issue a filtered
position estimate ̂𝜃⋆

𝑓 with the transfer function

tf𝜃 =
̂𝜃⋆
𝑓
̂𝜃⋆

= 𝑘1
𝑘1 + 𝑠 . (12)

The speed-estimation pll follows the same structure but uses
slow feedback (𝑘2 ≪ 𝑘1) to remove a speed offset with respect to
the position increment. Furthermore, a low-pass filter is added
to limit the bandwidth of the speed feed-forward term [3]. The
speed-estimation pll relies primarily on the ̂𝜃⋆ input to issue a
filtered position estimate ̂𝜃⋆

𝑓 with the transfer function

tf𝜔 =
�̂�⋆

𝑓
�̂�⋆ = 𝑘3

𝑘3 + 𝑠 . (13)

Throughout this research, we refer to this structure as dual-pll.
The dual-pll acts also as a benchmark reference for the fir

filter concept. On the experimental test-bench used in this work,
the dual-pll is stable up to 𝑓𝑝𝑙𝑙,𝑏𝑤 = 1kHz bandwidth, i.e. 1/20 of
the sampling frequency, with tuning 𝑘1 = 2𝜋𝑓𝑝𝑙𝑙,𝑏𝑤, 𝑘2 = 10−2𝑘1,
and 𝑘3 = 𝑘1. In contrast, a conventional pll is limited to about
50Hz bandwidth due to noise on the speed estimate [22], [23].

IV. Results

The results of this paper have been obtained on the test-bench
depicted in Figure 5 with parameters outlined in Table I. The

Table I
Motor Drive Parameters

Control and Inverter

DC voltage 𝑣𝑐 = 800V
Pwm switching period 𝑇𝑠𝑤 = 100μs
Sampling period 𝑇𝑠 = 50μs
Interlock time 𝑇𝑖 = 0.3μs
Typical current sensor noise 𝐼𝑤 ≈ 0.5%
Microcontroller 200MHz TI C2000 Delfino

Electric Motor

Base speed Ω = 1800rpm
Rated torque 𝑇𝑟 = 29.7Nm
Pole pairs 𝑝 = 5
Rated current 𝐼𝑟 = 10A
Rated 𝑑-axis inductance 𝐿𝑑 = 10.5mH
Rated 𝑞-axis inductance 𝐿𝑞 = 12.9mH
Rated PM flux 𝜓 = 349.1mWb
Rated stator resistance 𝑅 = 0.4Ω

exception is Figure 7, which has been obtained on a software-in-
the-loop (SiL) platform, since this dynamic performance study
requires an excessive transient load torque, which exceeds the
capabilities of the available lab equipment by a factor 10-100 (in
bandwidth and magnitude). Instead, the SiL platform executes
the same c-code for direct estimation and control but replaces
the physical test-bench with a high-fidelity model of the inverter
(modeling on-voltage drops and dead-times) and motor (using
flux-current maps that capture saturation and cross-saturation).
Both, the experimental and SiL platform use peak and valley
sampling such that the sampling frequency is twice the switching
frequency.

All results are obtained using pwm vector control with 1kHz
bandwidth. To prevent direct estimation issues at standstill, a
rotating voltage perturbation is injected at low speeds. The
frequency is chosen to be 5kHz, i.e. 5 times the bandwidth of
the current controller to prevent any undesired coupling. Unless
otherwise noted, the injection magnitude is chosen to be 120V, i.e.
15% of the dc voltage, at standstill. Increasing the speed |𝜔|, the
injection magnitude is scaled down linearly to zero and no voltage
perturbation is applied above 270rpm (absolute speed), i.e. 15%
of the rated speed. This perturbation is chosen as a compromise
between power losses and robustness based on Fig. 2. Furthermore,
all results are obtained without compensating voltage drops Δ𝑣𝛼𝛽
in control or estimation to provide a worst-case baseline that can
be improved with any compensation technique.

A. Speed-control results

Fig. 5 illustrates the behavior of direct position and speed
estimation, where the speed estimate is used for speed control of
the machine and the position estimate is used in the inner vector
(current) control loop for the Park transformation. The machine
follows a speed reference profile with positive and negative speed
steps, speed reversal, and finally a step to standstill, where the
machine is held. A positive speed, a positive and negative load
torque step is applied to illustrate the capability of the speed loop
to reject disturbances. The test procedure is used to show the
behavior of direct estimation without output filtering (Fig. 5(a)),
with fir filter (Fig. 5(b)) and dual-pll (Fig. 5(c)). Furthermore, the
behavior of selective filtering is illustrated without output filtering
(Fig. 5(d)), with fir filter (Fig. 5(e)) and dual-pll (Fig. 5(f)).
For each test, the following graphs are shown: the reference
(blue) and measured (orange) 𝑞-axis current (the 𝑑-axis current is
controlled and remains at zero); the estimated (blue), measured
(orange), and reference (yellow) speed; the estimated (blue) and
measured (orange) position; the speed error; the position error;
and the robustness factor 𝜌 (higher means better rejection of
disturbances).

We observe that the direct estimation does not require an output
filter and the resulting estimates may be acceptable for some
applications. However, the estimates can be noisy since direct
estimation issues an independent position and speed estimate at
each sampling instant. The error is higher at low speed where
the robustness factor tends to be lower (at times zero) and
voltage disturbances, e.g. dead-times, or modeling errors result
in increased estimation errors. The samples with low robustness
factor are removed by selective filtering, which reduces peak
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(d) Selective filtering
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(e) Selective and fir filter
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(f) Selective and dual-pll

Fig. 5. Experimental result: speed control (-0.60pu step at 10ms, +1.20pu step at 100ms, and -0.60pu step to standstill at 400ms) with load torque steps (+0.75pu at 200ms, -1.5pu
at 250ms, and +0.75pu at 300ms): direct position and speed estimation without filter, selective filter with 𝜌𝑚𝑖𝑛=50, fir filter with 𝑁=10, dual-pll with 1kHz position and speed
bandwidth, and combinations thereof. Each figure traces the following graphs (top to bottom): measured 𝑖𝑞 and reference 𝑖𝑞,ref current; measured 𝜔, estimated �̂�, and reference
𝜔ref speed; measured 𝜃 and estimated �̂� position; speed error �̃�; position error �̃�; robustness factor 𝜌.

estimation errors, which is especially noticeable in the position
error. Both approaches can be combined with fir and dual-pll
filtering. The fir results are reported using 𝑁 = 10 samples for
filtering. The dual-pll was tuned to the highest stable bandwidth
on the test-bench, which corresponds to 1kHz. In comparison,
the fir filter results in a cleaner position estimate but increased
speed estimation noise (while achieving a higher bandwidth, see
Subsection IV-B).

B. Dynamic filter performance

The dynamic performance of direct estimation with output
filters is evaluated by setting the estimator (and filters) to an

erroneous estimate and measuring the convergence times to the
correct values. The Fig. 6 shows the convergence from a 10%
position estimation error at t=1ms, 10% speed estimation error at
t=2ms, and 10% position and speed estimation error t=3ms. These
tests are used to evaluate the practical bandwidth 𝑝𝑏𝑤 = 0.34/𝑡𝑟,
where 𝑡𝑟 is the 10% to 90% rise time [41]. It is observed that
without output filter, direct estimation corrects a position or speed
error within one sample, which corresponds to 6.8kHz practical
bandwidth on the test system with 20kHz sampling frequency.
The output filters reduce the noise on the estimates at the expense
of dynamic performance. On position errors, the fir filter has a
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(c) Dual-pll filter

Fig. 6. Experimental result: convergence of direct position and speed estimation using
selective filtering with 𝜌𝑚𝑖𝑛=50 without output filter, with fir filter with 𝑁=10, and with
dual-pll with 1kHz position and speed bandwidth from an erroneous setpoint: 10%
position estimation error at t=1ms, 10% speed estimation error at t=2ms, and 10%
position and speed estimation error t=3ms. Each figure traces the following graphs (top
to bottom): measured 𝑖𝑞 and reference 𝑖𝑞,ref current; measured 𝜔, estimated �̂�, and
reference 𝜔ref speed; measured 𝜃 and estimated �̂� position; speed error �̃�; position
error �̃�.

𝑡𝑟 of 8 samples, which results in 0.85kHz practical bandwidth.
This behavior is expected since the fir filter converges linearly
by design (at constant speed) and must replace 80% of the 𝑁
internally stored “erroneous” samples to reduce the error by 80%.
The dual-pll filter has a 𝑡𝑟 of 7 samples, which results in 0.97kHz.
This result corresponds to the design bandwidth of 1kHz and the
filter has the expected exponential decay of a first-order filter. On
speed errors, the fir filter has a 𝑡𝑟 of 3 samples, which results in
2.3kHz practical bandwidth. In this case, the fir filter is faster as
it fits both the position and speed estimate and a speed sequence
with offset does not fit the expected position increment. In contrast,
the dual-pll filter relies predominantly on the speed estimate and
has a 𝑡𝑟 of 7-8 samples, which results in 0.85kHz-0.97kHz. Both
filters behave similarly when a position and speed error occurs
simultaneously. It is noted that the practical bandwidth of the fir
filter can be increased by decreasing 𝑁, where 𝑁=0 corresponds
to a pass-through without filtering (see Subsection IV-D). On
the other hand, increasing the bandwidth of the dual-pll filter
resulted in stability issues.

As a second test, the dynamic performance of direct estimation
is evaluated by applying an excessive (400Nm) transient (1kHz)
load torque signal, which exceeds the induction-machine dyno
capabilities by a factor 10 in magnitude and bandwidth. Hence, the
results presented in Fig.7 are obtained on the SiL platform. The
load torque is applied to achieve a ±10% 1kHz speed variation at
zero speed, where the estimation robustness tends to be low (see
Subsection IV-A). The tests are performed using selective filtering
combined with fir filter and dual-pll. In direct comparison, the
fir filter traces the high-frequency speed signal significantly better.
In fact, it achieves more than twice the speed estimation bandwidth
(with 𝑁=10), which can be further increased, while achieving
a similar filter performance (see Subsection IV-A)). This test is
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Fig. 7. Result obtained on the software-in-the-loop platform: dynamic performance
in presence of a zero-mean 1kHz triangular speed variation (driven by an unrealistic
load torque): direct position and speed estimation using selective filtering with 𝜌𝑚𝑖𝑛=50
combined with fir filter with 𝑁=10 and dual-pll with 1kHz position and speed bandwidth.
Each figure traces the following graphs: measured 𝜃 and estimated �̂� position; measured
𝜔 and estimated �̂� speed; position error �̃�; speed error �̃�.

performed since speed estimation bandwidth has a high priority
in many practical applications. The speed signal is the measured,
i.e. estimated, input of the speed control loop, which is a common
configuration and may require high bandwidths (especially if an
external, cascaded position loop is used). Furthermore, a high
bandwidth speed signal can provide useful information on the
load torque dynamics or torque ripples.

C. Selective filter evaluation

The selective filter performance is evaluated at zero speed
where the robustness factor 𝜌 tends to be low. Fig. 8 presents
the results for multiple runs plotted with respect to the minimum
robustness factor 𝜌𝑚𝑖𝑛. Hence, the direct estimation algorithm
does not issue a new estimate when 𝜌 < 𝜌𝑚𝑖𝑛 but extrapolates
the measurement from the previous sampling instant.

A small 𝜌𝑚𝑖𝑛 improves the mean, worst-case, and rms position
and speed estimation error considerably compared to 𝜌𝑚𝑖𝑛 = 0.
Increasing 𝜌𝑚𝑖𝑛 reduces the errors marginally. However once 𝜌𝑚𝑖𝑛
is larger than the mean 𝜌 value, the estimation process deteriorates
quickly since a majority of the samples are discarded.

Finally, it is noted that the computational overhead of selective
filtering is irrelevant. Direct estimation typically uses a Newton
method for identifying the estimates [22], [23]. Hence, it exposes
the 2 × 2 Hessian of the cost function, which is needed in
the Newton step. Numerical instabilities are prevented using an
eigenvalue check, which is trivial for a matrix of this size. Upon
convergence, the solver can simply check the resulting 𝜌 and
discard the estimate if needed. These checks can be performed
in <10ns.

D. Fir filter evaluation

The fir filter performance is evaluated at zero speed where
the estimation noise tends to be high. Fig. 9 presents the results
for multiple runs plotted with respect to the number of samples
𝑁 that are used for filtering. As expected, increasing the number
of samples improves the mean, worst-case, and rms position and
speed estimation error. Initially the increase is significant and the
estimation errors are approximately halved at 𝑁 = 10 (compared
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Fig. 8. Experimental result: selective filtering behavior with respect to filter parameter
𝜌𝑚𝑖𝑛 at standstill (the robustness factor 𝜌 is lowest at 𝜔 = 0rpm on average): some
𝜌𝑚𝑖𝑛 improves the mean, worst case, and rms (dashed) estimation errors, excessive
𝜌𝑚𝑖𝑛 tends to filter a majority of the estimates, which compromises the estimation
process.

to 𝑁 = 0). However, the improvements tend to level out at high
𝑁. This behavior is expected since output filters are effective in
removing noise. The remaining offset, which may result from
modeling errors, is found to be <1%.

Increasing the filtering performance, i.e. 𝑁, is expected to
reduce the filter dynamics, i.e. bandwidth. This behavior is
quantified using the concept of practical bandwidth 𝑝𝑏𝑤 = 0.34/𝑡𝑟,
where 𝑡𝑟 is the 10% to 90% rise time [41]. An estimation offset is
introduced and the “rise time” is measured until the estimate falls
below 10% of the initial error. The maximum achievable 𝑝𝑏𝑤
is 6.8kHz since direct estimation without output filter (𝑁 = 0)
requires at least 1 sample (50𝜇𝑠) to reach the estimate. The
𝑝𝑏𝑤 remains at 6.8kHz for 𝑁 ∈ [0, 5], 4.3kHz for 𝑁 ∈ [6, 8],
2.3kHz for 𝑁 = [9, 12]. By comparison the dual-pll is unstable at
frequencies exceeding 1kHz on the used test-bench configuration.
Tuned to 1kHz, it achieves estimates with a similar noise compared
to the fir filter with 𝑁 = 10 and more than double the bandwidth.

Finally, the computation complexity of the fir filter increases
linearly with 𝑁. However, typical values, e.g. up to 𝑁 = 20,
remains trivial to execute on typical motor drive microcontrollers.

V. Conclusion

This paper studies high-performance filter strategies for direct
position estimation since estimates can be affected by disturbances
and noise. Two types of filters are proposed, a selective filter
strategy that evaluates the robustness of an estimate against noise
and discards estimates lacking robustness. The concept is found
to be effective against worst case estimation errors, which are
reduced by a factor of approximately 4. Hence, some selective
filtering should always be applied.

The output filters store past samples and use them for filtering.
Since direct estimation issues an independent position and speed
estimate, both estimates are used for filtering. A finite impulse
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Fig. 9. Experimental result: fir filter behavior with respect to length 𝑁 at standstill (the
robustness factor 𝜌 is lowest at 𝜔 = 0rpm on average): increasing 𝑁 increases the
signal stability against estimation noise (except offsets e.g. due to modeling errors) at
the expense of reducing the practical bandwidth (𝑝𝑏𝑤 = 0.34/𝑡𝑟, where 𝑡𝑟 is the 10%
to 90% rise time of the speed estimate [41]) and increasing the computation time.

response (fir) filter is proposed that fits the past 𝑁 samples
according to a least squares criterion. This approach decreases
the estimation noise with no compromise in terms of dynamics
up to 𝑁 = 5 and a limited decrease of dynamics at higher 𝑁. At
the test bench the practical bandwidth is found to be 6.8kHz for
𝑁 ∈ [0, 5], 4.3kHz for 𝑁 ∈ [6, 8], and 2.3kHz for 𝑁 ∈ [9, 12].

Furthermore, a dual-pll output filter is proposed and evaluated.
The concept achieves a 1kHz bandwidth compared to about
50Hz of a conventional pll and acts as a benchmark reference
for the fir filter. Hence, direct estimation with fir or dual-pll
output filters can achieve a 10 to 100 times higher bandwidth
than a conventional pll at the same absolute mean error (<1%).
Furthermore, the fir has 5 times the bandwidth of the dual-pll
at a similar noise. Finally, the computational complexity of the
filters is evaluated and the execution time (a few microseconds)
is considered negligible in typical settings.
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