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Abstract—This paper analyzes direct position and speed estimation
from a control theoretical and numerical standpoint. The paper
develops the theory of local identifiability and defines the conditions
such that position and speed can be identified uniquely based on
a sufficiently accurate guess. Local identifiability typically holds at
nonzero machine speeds and zero speeds with any perturbation,
e.g. an injected high frequency signal in pwm control or a random
switching ripple in direct control (except in isotropic machines). The
position and speed is identifiable in more than 98.5% of feasible
operation points “instantaneously”, and can be extrapolated from
past estimates in the remaining cases. Finally, numerical solving
strategies are studied and a combination of the Newton and conjugate
gradient method is shown to provide suitable estimates within 1-5
solver iterations depending on the required accuracy.

Index Terms—Estimation, Motor Drives, Numerical Stability, Op-
timization Methods

I. Introduction

Synchronous motor drives requires an accurate rotor position
and speed information for high performance control. Position
sensorless estimation schemes have been introduced to remove
the cost of a resolver or encoder and improve their reliability by
removing a single point of failure. These arguments are especially
compelling in mass-produced drive systems, e.g. in hybrid and
electric vehicles, when the machine is physically distant from the
motor controller, e.g. pumps for underground mining or wind
power plants with converter at the tower base, the available
space for a motor drive is restricted, e.g. low power drives, or a
drive system operates in hazardous or clean environments, where
physical contact between stator and rotor is undesired.

Direct position and speed sensorless estimation obtain the
position and speed information from an optimization problem.
The concept is based on [1], [2] removing any form of filtering,
that yields: (i) “instantaneous” estimation by extracting position
and speed estimation from the measurements of one sample (two
samples if the current derivative is computed from two adjacent
samples), (ii) a single scheme for low and high speed position
estimation, (iii) compatibility with any perturbation, i.e. any
signal injection technique or exploiting the current ripple, for low
speed estimation, (iv) compatibility with nonlinear motor models
that account for saturation. The concept consists in identifying
the position and speed based on a least squares formulation of
the dynamic model parametrized with the measurements of one
sample. The resulting cost function is nonlinear in the estimates
and is solved numerically in real time. This approach with added
pll filtering has been studied experimentally for applications that
require highly dynamic torque control, e.g. belt-starter-generator

drives that must crank an engine or electric vehicle traction motor
drives. It was combined with pwm control, e.g. vector control or
convex control set model predictive control (ccs-mpc) [1], which
uses a high frequency perturbation for low speed estimation, and
direct control, e.g. finite control set model predictive control
(fcs-mpc) [2], which uses the inherent random switching ripple
for low speed estimation. It can also take magnetic saturation
into account [3] and can be applied to induction motor drives
[4]. A block diagrams is shown in Fig. 1.

This paper studies the control-theoretical requirements such
that position and speed are identifiable based on the measurements
of a single sample. The resulting mathematical tools are useful to
identify occasional poor estimates, which should be discarded and
provide estimation guarantees, despite of the position and speed
estimation problem’s lack of globally observability [5], [6]. This
research focuses on local identifiability, i.e. the requirements that
both parameters can be estimated at each sampling instant, based
on a sufficiently accurate initial guess. Furthermore, we study the
numerical complexity of direct position sensorless estimation.

This paper is organized a follows. The robust identifiability
theory is developed in Section II for a generic nonlinear system
and applied to synchronous motor drives in Section III and
Section IV. The numerical aspects are treated in Section V.

II. Direct Estimation
A. Definition and local parameter identifiability

The concept of direct parameter estimation is described for the
nonlinear dynamic system ̇𝑥 = 𝑓 (𝑥, 𝑢, 𝑧), with states 𝑥 ∈ 𝕏 ⊆ ℝ𝑛,
inputs 𝑢 ∈ 𝕌 ⊆ ℝ𝑚, and unknown parameters 𝑧 ∈ ℤ ⊆ ℝ𝑙

at time instant 𝑡. In sampled systems, the time derivative ̇𝑥 is
typically approximated with the finite difference of two adjacent
𝑥. We assume that 𝑓 ∶ 𝕏×𝕌×ℤ → ℝ𝑛 is smooth and the sets 𝕏,
𝕌, and ℤ are convex. Direct estimation uses the known states
𝑥 and inputs 𝑢 to generate an estimate ̂𝑧 = 𝑧 + ̃𝑧, where ̃𝑧 is the
estimation error. The residuals of the dynamic system

𝑟( ̂𝑧) = 𝑓 (𝑥, 𝑢, ̂𝑧) − ̇𝑥, (1)

act as a qualifier of an estimate ̂𝑧 in the sense that 𝑟( ̂𝑧) = 0 is a
necessary condition such that ̂𝑧 = 𝑧, i.e. ̃𝑧 = 0. In other words,
̂𝑧 = 𝑧 implies 𝑟( ̂𝑧) = 0 but the reverse is not true in general and

additional provisions are necessary. Direct parameter estimation
fits the parameters in a nonlinear least squares sense with the
optimization problem

̂𝑧⋆ = arg min
̂𝑧∈𝒟

𝑐( ̂𝑧) = ‖𝑟( ̂𝑧)‖2 = 𝑟( ̂𝑧)′𝑟( ̂𝑧), (2)
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Fig. 1. Direct position and speed estimation for pwm control, e.g. vector
control or ccs-mpc, and direct control, e.g. fcs-mpc, with optional high frequency
perturbation

with the cost function 𝑐 ∶ ℤ → ℝ and search domain 𝒟 ⊆ ℤ.
Without loss of generality, we shift the problem in the origin

̃𝑟( ̃𝑧) = 𝑟(𝑧 + ̃𝑧) = 𝑓 (𝑥, 𝑢, 𝑧 + ̃𝑧) − ̇𝑥, (3)

and obtain the modified optimization problem

̃𝑧⋆ = arg min
̃𝑧∈�̃�

̃𝑐( ̃𝑧) = ‖ ̃𝑟( ̃𝑧)‖2 = ̃𝑟( ̃𝑧)′ ̃𝑟( ̃𝑧), (4)

with error cost function ̃𝑐(⋅) ∶ ℤ − {𝑧} → ℝ and search domain
�̃� = 𝒟−{𝑧}. The error formulation permits studying the solutions
of (4) where ̃𝑧⋆ = 0 identifies ̂𝑧⋆ = 𝑧.

Local identifiability establishes whether the parameters can be
identified based on a sufficiently accurate guess ̃𝑧𝑔. The parameters
are said to be locally identifiable if the minimizer ̃𝑧⋆ = 0 is unique
in its immediate neighborhood. This definition requires the origin
to be a strict, which holds for smooth functions with strictly
convex origin [7].

B. Search domain

Local identifiability requires a strict minimum that is unique
in a quasiconvex neighborhood of the origin [7]. Hence, viable
search domains are identified introducing the set of local strict
convexity �̃� and the set of local quasiconvexity �̃�

�̃� = { ̃𝑧 ∈ ℝ𝑙 | ℋ ̃𝑐( ̃𝑧) ⪰ 0} , (5a)

�̃� = { ̃𝑧 ∈ ℝ𝑙 | ∑ (eig [ 0 (∇ ̃𝑐( ̃𝑧))′

∇ ̃𝑐( ̃𝑧) ℋ ̃𝑐( ̃𝑧) ] < 0) ≤ 1} . (5b)

The function is said to be locally convex iff the Hessian is
positive definite and locally quasiconvex iff the bordered Hessian
has at most one negative eigenvalue (counting multiplicity) [7].
As observed in Fig. 2, �̃� and �̃� are nonconvex sets in general.
However, any convex subset �̃� ⊆ �̃�, 0 ∈ �̃� is a suitable search
domain. Restricting the subset to �̃� ⊆ �̃�, 0 ∈ �̃� tends to have
numerical advantages (see Section V). An explicit lower bound for
�̃� can be identified by computing the largest ball inscribed in �̃�
(or �̃�). However, the resulting program is np-hard for nonconvex
sets [7] and therefore avoided in real-time computation.

C. Convexification of the cost function

Nonlinear identification problems typically require a sufficiently
accurate guess ̃𝑧𝑔 ∈ �̃� to uniquely identify the ̃𝑧⋆. However, the
convexity properties of the origin depend on the dynamic system
and it can be challenging to enforce strict convexity persistently,

i.e. at all time. Hence, a term can be added to the cost function
that enforces strict convexity of the origin

̃𝑧⋆ = arg min
̃𝑧∈�̃�

̃𝑐( ̃𝑧) + 𝜌‖ ̃𝑧 − ̃𝑧𝑔‖2. (6)

The convexity term adds a quadratic cost centered in ̃𝑧𝑔 (as
opposed to the unknown origin) and can therefore shift ̃𝑧⋆ from the
origin towards the guess ̃𝑧𝑔. Hence, the convexification parameter
𝜌 ∈ ℝ>0 should be chosen such that ̃𝑐( ̃𝑧) ≫ 𝜌‖ ̃𝑧‖2 for ̃𝑧 ∈ 𝒟 to
prevent unintended modifications of ̃𝑧⋆. However, even a small 𝜌
binds the parameters to the guess ̃𝑧𝑔 and prevents these dimensions
from arbitrary modification when local identifiability does not
hold. Examples of such bad native operation points (bno) are
shown in Fig. 2. In a sampled system, ̃𝑧𝑔 is typically chosen as
the estimate from the previous time step and therefore typically
close to the origin.

III. Synchronous Machine Model
A. The implicit dq model

Any permanent magnet synchronous machine (pmsm), wound-
rotor (without damper windings), and reluctance synchronous
machine (rsm) is described by the dynamic equation in the 𝑑𝑞
reference frame [8]

�̇�𝑑𝑞 = −𝜔J𝜆𝑑𝑞 + ̄𝑣𝑑𝑞, (7)

where 𝜆𝑑𝑞 ∈ ℝ2 is the stator flux, ̄𝑣𝑑𝑞 = 𝑣𝑑𝑞 − 𝑅𝑖𝑑𝑞 ∈ ℝ2 is
the compensated terminal voltage with the resistive voltage drop
𝑅𝑖𝑑𝑞, and J = [[0, 1]′, [−1, 0]′] is the 90∘ rotation matrix. In 𝑑𝑞,
the stator flux and armature (stator) currents are related by a
static map in the 𝑑𝑞 reference frame [9].

𝜆𝑑𝑞 = 𝑙 ∘ 𝑖𝑑𝑞 ≈ L𝑖𝑑𝑞 + 𝜓𝑟, (8)

where 𝑙 ∶ ℝ2 → ℝ2 is the nonlinear current-flux map. It links
𝑑𝑞 current and 𝑑𝑞 flux globally and is computed through finite
element analysis (fea) or measured experimentally. For control
purposes, this relation is typically approximated with an affine
map with parameters L = diag[𝐿𝑑, 𝐿𝑞] and 𝜓𝑟 = [𝜓, 0]′, where
𝐿𝑑 and 𝐿𝑞 are the 𝑑 and 𝑞 axis inductances and 𝜓 is the rotor
flux magnitude. We assume that the affine approximation is a fit
with reasonable accuracy, e.g. using optimized parameters [9].

B. The explicit αβ model
The implicit position dependence of the 𝑑𝑞 models is made

explicit transforming (7) and (8) into the static 𝛼𝛽 refer-
ence frame using the orthogonal Park transformation P(𝜃) =
[[cos 𝜃, − sin 𝜃]′, [sin 𝜃, cos 𝜃]′] with ̄𝑣𝑑𝑞 = P(𝜃) ̄𝑣𝛼𝛽, 𝜆𝑑𝑞 =
P(𝜃)𝜆𝛼𝛽, and 𝑖𝑑𝑞 = P(𝜃)𝑖𝛼𝛽. The dynamic system (7) becomes
�̇�𝛼𝛽 = ̄𝑣𝛼𝛽 [8] and the current-flux map (8) results in

𝜆𝛼𝛽 = P′(𝜃)LP(𝜃)𝑖𝛼𝛽 + P′(𝜃)𝜓𝑟. (9)

The dynamic model and flux map is put into relationship by
deriving the latter with respect of time

�̇�𝛼𝛽 = P′(𝜃)LP(𝜃) ̇𝑖𝛼𝛽 + 𝑑
𝑑𝑡 (P′(𝜃)LP(𝜃)) 𝑖𝛼𝛽 + Ṗ′(𝜃)𝜓𝑟.

The term P′(𝜃)LP(𝜃) is written using the sum 𝐿Σ = (𝐿𝑑 +𝐿𝑞)/2
and difference 𝐿Δ = (𝐿𝑑 − 𝐿𝑞)/2 inductance [1]

P′(𝜃)LP(𝜃) = 𝐿ΣI + 𝐿ΔP̄(2𝜃), (10)
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(e) 𝜔 ≠ 0, 𝑖𝑑𝑞 = 0, ̇𝑖𝑑𝑞 = 0
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Fig. 2. Cost function ̃𝑐([�̃�, �̃�]′) sublevel sets, set of local strict convexity �̃�, and set of local quasiconvexity �̃� of ipmsm (𝐿Δ = 2.4mH, 𝜓 = 0.3491Wb): typical
operating ponts and bad native operation points (bno: 𝑖𝑑𝑞 = [−𝜓/(2𝐿Δ), 0]′)

where P̄(2𝜃) = [[cos 2𝜃, sin 2𝜃]′, [sin 2𝜃, − cos 2𝜃]′] and I is the
identity matrix. Hence the 𝛼𝛽 dynamic model is

̄𝑣𝛼𝛽 = (𝐿ΣI + 𝐿ΔP̄(2𝜃)) ̇𝑖𝛼𝛽+2𝐿Δ𝜔JP̄(2𝜃)𝑖𝛼𝛽+𝜔𝜓𝑞(𝜃), (11)

where 𝜓𝑞(𝜃) = JP(𝜃)′𝜓𝑟 with 𝑞(𝜃) = [− sin(𝜃), cos(𝜃)]′. The
𝛼𝛽 model has an explicit dependence on the position and speed.
This model can be written in state-space form with state 𝑖𝛼𝛽,
input ̄𝑣𝛼𝛽, and unknown parameters [𝜃, 𝜔]′.

IV. Position and Speed Estimation
A. Definitions and general properties

Direct position and speed estimation uses the dynamic
model (11) to issue the normalized estimates ̂𝑧 = [ ̂̄𝜃, ̂�̄�]′ =
[ ̂𝜃/Θ, �̂�/Ω]′, where Θ = 𝜋 and Ω ∈ ℝ>0 is the rated speed.
The estimates describe the parameters 𝑧 = [ ̄𝜃, �̄�] = [𝜃/Θ, 𝜔/Ω]′

with error ̃𝑧 = 𝑧− ̂𝑧 = [ ̃̄𝜃, ̃�̄�] = [ ̃𝜃/Θ, �̃�/Ω]′. The dynamic model
(11) is written as a function of the estimates

𝑟( ̂𝑧) = (𝐿ΣI + 𝐿ΔP̄(2 ̂𝜃)) ̇𝑖𝛼𝛽 (12)
+ 2𝐿Δ�̂�JP̄(2 ̂𝜃)𝑖𝛼𝛽 + 𝜓�̂�𝑞( ̂𝜃) − ̄𝑣𝛼𝛽,

where ̇𝑖𝛼𝛽, 𝑖𝛼𝛽, and ̄𝑣𝛼𝛽 are known at a given time instant 𝑡
even in absence of a position and speed sensor. Without loss
of generality, we introduce the error function, substitute ̄𝑣𝛼𝛽
as they are defined by the dynamic equation (11), as well as
𝑖𝛼𝛽 = P′(𝜃)𝑖𝑑𝑞 and ̇𝑖𝛼𝛽 = P′(𝜃) ( ̇𝑖𝑑𝑞 + 𝜔J𝑖𝑑𝑞) [8]

̃𝑟( ̃𝑧) = 𝐿Δ (I − P(2 ̃𝜃)) ( ̇𝑖𝑑𝑞 − 𝜔J𝑖𝑑𝑞) + 2�̃�𝐿ΔJ𝑖𝑑𝑞

+ 𝜔𝜓 ( ̄𝑞(2 ̃𝜃) − ̄𝑞( ̃𝜃)) + �̃�𝜓 ̄𝑞( ̃𝜃), (13)

where ̄𝑞( ̃𝜃) = [sin( ̃𝜃), cos( ̃𝜃)]′.

Lemma 1. The cost function ̃𝑐(⋅) is invariant with respect to
rotor position 𝜃 and depends only on the estimation error ̃𝜃.

Proof. Obvious since (13) depends only on ̃𝜃.

Lemma 1 formally states that a synchronous machine responds
to a position error ̃𝜃 independent of the rotor position 𝜃 due to
rotational symmetry. Hence, the behavior of direct position and
speed estimation can be studied for a single position, e.g. 𝜃 = 0,
without loss of generality. The cost function ̃𝑐(⋅) and estimation
problem (4) follows immediately from ̃𝑟(⋅).

B. Local position and speed identifiability
To investigate the cost function properties, we introduce the

difference flux 𝜉𝑑𝑞 = 2𝐿Δ𝑖𝑑𝑞 + 𝜓𝑟 with derivative ̇𝜉𝑑𝑞 = 2𝐿Δ ̇𝑖𝑑𝑞.

Theorem 1. The origin ̃𝑐(0) is strictly convex iff

𝜔‖𝜉𝑑𝑞‖2 ≠ ̇𝜉′
𝑑𝑞J𝜉𝑑𝑞 ⇔ 𝜉′

𝑑𝑞J( ̇𝜉𝑑𝑞 − 𝜔J𝜉𝑑𝑞) ≠ 0.

Proof. We study the convexity in the origin ̃𝑧 = 0. The Hessian
is ℋ ̃𝑐(0) = [[𝑑1, 𝑑2]′, [𝑑2, 𝑑3]′] with

𝑑1 = 2Θ2 (( ̇𝜉𝑑 + 𝜔𝜉𝑞)2 + ( ̇𝜉𝑞 − 𝜔𝜉𝑑)2) = 2Θ2‖ ̇𝜉𝑑𝑞 − 𝜔J𝜉𝑑𝑞‖2,
𝑑2 = 2ΘΩ( ̇𝜉𝑑𝜉𝑑 + ̇𝜉𝑞𝜉𝑞) = 2ΘΩ ̇𝜉′

𝑑𝑞𝜉𝑑𝑞,
𝑑3 = 2Ω2 (𝜉2

𝑑 + 𝜉2
𝑞) = 2Ω2‖𝜉𝑑𝑞‖2. (14)

Furthermore, the second order principal minor is

𝐷 = 𝑑1𝑑3 − 𝑑2
2 = 4Θ2Ω2 (𝜔‖𝜉𝑑𝑞‖2 − ̇𝜉′

𝑑𝑞J𝜉𝑑𝑞)
2

(15)

= 4Θ2Ω2 (𝜉′
𝑑𝑞J( ̇𝜉𝑑𝑞 − 𝜔J𝜉𝑑𝑞))

2
.
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(b) Rsm: 𝑖𝑑𝑞 ≠ 0, ̇𝑖𝑑𝑞 < 0
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Fig. 3. Cost function ̃𝑐([�̃�, �̃�]′) sublevel sets, set of local strict convexity �̃�,
and set of local quasiconvexity �̃� of rsm (𝐿Δ = 2.4mH, 𝜓 = 0Wb) and spmsm
(𝐿Δ = 0mH, 𝜓 = 0.3491Wb): typical operating ponts and bad native operation
points (bno: 𝑖𝑑𝑞 = [−𝜓/(2𝐿Δ), 0]′)

Since all principle minors (𝑑1, 𝑑3, 𝐷) are nonnegative, ̃𝑐(0) is
convex [10]. In addition, the function is strictly convex, when the
leading principle minors are positive definite. This holds when
𝐷 > 0 since 𝐷 > 0 implies 𝑑1 > 0 and 𝑑3 > 0.

The Theorem 1 shows that 𝜃 and 𝜔 are locally identifiable
unless the machine is operated in specific operation points, named
bad native operation points (bno). The parameters are identifiable
in machines with a salience 𝐿Δ ≠ 0 and suitable perturbation ̇𝑖𝑑𝑞,
unless 𝑖𝑑𝑞 = [−𝜓/(2𝐿Δ), 0]′. This bno does not exist for spmsm
and is of limited relevance for ipmsm, where it is located on
the opposite half-plane of the mtpa trajectory [9]. Examples are
shown in Fig. 2(f), Fig. 2(g), and Fig. 2(h). For rsm, the bno is
𝑖𝑑𝑞 = 0 and needs to be avoided at any speed (and perturbation).
For spmsm, the bno is 𝜔 = 0.

C. Steady-state local identifiability and perturbation strategies
Motor drive systems tend to work in close to steady-state

conditions ( ̇𝑖𝑑𝑞 = 0) in many applications since the electrical
transients tend to be fast compared to the mechanical ones.

Corollary 1. Steady-state ( ̇𝑖𝑑𝑞 = 0) local identifiability holds
iff 𝜔 ≠ 0 and 2𝐿Δ𝑖𝑑𝑞 + 𝜓𝑟 ≠ 0.

Proof. Theorem 1 requires 𝜔‖𝜉𝑑𝑞‖2 ≠ 0 at ̇𝜉𝑑𝑞 = ̇𝑖𝑑𝑞 = 0.

Hence, 𝜃 (and 𝜔) cannot be estimated at 𝜔 = 0 in steady-state
conditions in any machine. Hence, low speed estimation requires
a perturbation of the states, i.e. currents. In general, any strategy
is valid that adds a (high-frequency) zero-mean perturbation (with
̇𝑖𝑑𝑞 ≠ 0) to a (steady-state) operation point 𝑖𝑑𝑞.

Periodic perturbation is typically used in combination with
pwm inverters using vector control [1] or ccs-mpc [8]. A well
defined periodic signal is added to a given steady state operation
point [1]. Typical approaches are the injection of a pulsating
sinusoidal signal along a predefined 𝑑𝑞 [1], [11], [12] or zero
[13] axis or a vector that rotates at high-frequency in the 𝑑𝑞 space
[11], [12]. Since the perturbation is needed only at low speed,
the injection magnitude can be reduced as the speed increases.

Random perturbation exploits switching harmonics in the
motor currents and is typically used in motor control methods
that apply switching states directly, e.g. direct torque control (dtc)
[14], [15] or fcs-mpc [2], [16], [17]. The lack of pwm makes
the injection and reconstruction of a well defined high-frequency
signal challenging. Hence, it is beneficial to rely on the current
ripple that is fully visible in the measurements of such methods
[2], [8].

V. Numerical Computation of Estimates
At each sampling instant, a numerical solver obtains the

stationary point of the cost function ̄𝑐(⋅) by producing a sequence
of iterates ̂𝑧0, … , ̂𝑧𝑗, … , ̂𝑧⋆. The sequence starts with an initial
guess ̂𝑧𝑔 = ̂𝑧0 and ends with the optimizer ̂𝑧⋆ that identifies
the (normalized) parameters 𝑧 with accuracy, i.e. ‖𝑧 − ̂𝑧⋆‖ ≤ 𝜖,
𝜖 ∈ ℝ>0. The sequence is generated identifying a suitable step
Δ𝑗 and stepsize 𝛼𝑗

̂𝑧𝑗+1 = ̂𝑧𝑗 + 𝛼𝑗Δ𝑗. (16)

The stepsize 𝛼𝑗 is typically chosen with a suitable linesearch
technique to accelerate and robustify convergence [18]. As any
linesearch technique is applicable, golden section search [18] is
used throughout this research. The step Δ𝑗 can be determined
with first or second order methods.

The nonlinear conjugate gradient method is a first order
method that identifies a stationary point of a differentiable
cost function. It avoids the “zig-zag” nature of the steepest
descent method by following the conjugate direction Δ𝑗 =
−∇𝑐( ̂𝑧𝑗) + 𝛽𝑗Δ𝑗−1 (with Δ0 = −∇𝑐( ̂𝑧𝑗)). The parameter 𝛽𝑗
can be computed using several formulae [18] and we use
the Fletcher-Reeves formula 𝛽𝑗 = ‖∇𝑐( ̂𝑧𝑗)‖2/‖∇𝑐( ̂𝑧𝑗−1)‖2. The
conjugate gradient method is observed to identify estimates
robustly even if the cost is quasi-convex. The second order Newton
method identifies the roots of a twice differentiable function by
approximating the function with its second order Taylor series in
̂𝑧𝑗. This approximation can be solved for its minimum resulting

in Δ𝑗 = −ℋ−1
̃𝑐 ( ̂𝑧𝑗)∇𝑐( ̂𝑧𝑗) [18].

A reference solver is implemented that combines the benefits
of the gradient and Newton method. Since ∇𝑐( ̂𝑧𝑗) and ℋ ̃𝑐( ̂𝑧𝑗)
are computed at each time step, the solver can check efficiently
for strict convexity and quasi-convexity [7] resulting in the step

Δ𝑗 =

⎧{{{
⎨{{{⎩

−ℋ−1
̃𝑐 ( ̂𝑧𝑗)∇𝑐( ̂𝑧𝑗), if ̂𝑧𝑗 ∈ 𝒵

−∇𝑐( ̂𝑧𝑗) + 𝛽𝑗Δ𝑗−1, if ̂𝑧𝑗 ∈ 𝒬 ∖ 𝒵 and 𝑗 > 0
−∇𝑐( ̂𝑧𝑗), if ̂𝑧𝑗 ∈ 𝒬 ∖ 𝒵 and 𝑗 = 0
0. otherwise.

(17)

If ̂𝑧𝑗 is in the strictly convex region, the Newton step can be
employed to maximize convergence. If ̂𝑧𝑗 is in the quasi-convex
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(c) Pwm vector control with disturbance (5% of rated voltage)

Fig. 4. Experimental zero-speed crossing with direct position and speed sensorless:
position measurement 𝜃 and estimate �̂�, position error �̃�, speed measurement 𝜔
and estimate �̂�, 𝑑 and 𝑞 currents 𝑖𝑑𝑞

region, the conjugate gradient step is used to increase the region
of convergence. If the problem lacks quasi-convexity, the solver
cannot issue a meaningful estimate. Instead, the guess ̂𝑧𝑔 is
returned, which corresponds to the extrapolated estimate from
the previous sample. The performance of the algorithm is shown
in Fig. 5 and Fig. 6.

VI. Results

The drawings and test-bench results in this paper are obtained
on a ipmsm machine with rated speed 𝑛𝑟 = 1800rpm, rated torque
𝑇𝑟 = 29.7Nm, 5 pole pairs, rated line to line voltage 𝑉𝑟,𝑙𝑙 =
460Vrms, rated current 𝐼𝑟 = 9.4Arms, and electric parameters

θ [rad]~

ω 
[ra

d/
s]

~

0

-40

40
60
80

100

-60
-80

-100

20

-20

-π/4-π/2 π/40 π/2

𝒵
~

𝒬
~

(a) Conjugate gradient: steps ̃𝑧𝑗

Solver iteration j [-]

||z
|| [

-]
~_

10-4

10-2

100

10-6

10-10

10-6

50 1510 20

(b) Conjugate gradient: error ‖ ̃̄𝑧𝑗‖

θ [rad]~

ω 
[ra

d/
s]

~

0

-40

40
60
80

100

-60
-80

-100

20

-20

-π/4-π/2 π/40 π/2

𝒵
~

𝒬
~

(c) Newton method: steps ̃𝑧𝑗

Solver iteration j [-]

||z
|| [

-]
~_

10-4

10-2

100

10-6

10-10

10-6

50 1510 20

(d) Newton method: error ‖ ̃̄𝑧𝑗‖

θ [rad]~

ω 
[ra

d/
s]

~

0

-40

40
60
80

100

-60
-80

-100

20

-20

-π/4-π/2 π/40 π/2

𝒵
~

𝒬
~

(e) Reference solver: steps ̃𝑧𝑗

Solver iteration j [-]

||z
|| [

-]
~_

10-4

10-2

100

10-6

10-10

10-6

50 1510 20

(f) Reference solver: error ‖ ̃̄𝑧𝑗‖

Fig. 5. Numerical solver performance: the conjugate gradient method converges
for any initial guess ̃𝑧𝑔 ∈ �̃� (circles), the Newton method converges with fast
rate for any initial guess ̃𝑧𝑔 ∈ �̃� (crosses), the reference solver uses the conjugate
gradient step for any ̃𝑧𝑗 ∈ �̃� ∖ �̃� and Newton step for any ̃𝑧𝑗 ∈ �̃�.

𝐿𝑑 = 10.5mH, 𝐿𝑞 = 12.9mH, 𝜓 = 349.1mWb, and 𝑅 = 0.4Ω.
The spmsm and rsm drawings are obtained by setting 𝐿𝑑 = 𝐿𝑞 and
𝜓 = 0mWb, respectively. The machine is fed by a SiC inverter
with dc-bus voltage 𝑉𝑐 = 800V, sampling period 𝑇𝑠 = 100μs, and
interlock times 𝑇𝑖 = 0.3μs. The switching frequency is 1/𝑇𝑠 in
pwm vector control and 2-3kHz in fcm-mpc. The stator resistance
and interlock times are compensated using ̄𝑣𝛼𝛽. The control
platform is a 200MHz TI C2000 Delfino microcontroller.

A. Test bench results
The operation of direct position and speed sensorless estimation

is shown on a test bench and the results are reported in Fig. 4.
The motor drive performs a position sensorless zero crossing at
±50rpm. Fig. 4(a) shows 𝜃 and 𝜔 estimation with fcm-mpc that
performs the zero crossing exploiting the perturbation provided
by the switching ripple. Fig. 4(b) shows 𝜃 and 𝜔 estimation
with pwm vector control that introduces a zero-mean perturbation
at |𝜔| < 50rpm. Fig. 4(c) shows 𝜃 and 𝜔 estimation with pwm
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Fig. 6. Performance of numerical solvers (1M random operation points per
marker) with random perturbation and robust perturbation (�̇�𝑑𝑞 = 𝛾J𝜉𝑑𝑞) for
normalized initial guesses ̃̄𝑧𝑔 = [�̃�𝑔/Θ, �̃�𝑔/Ω]′ satisfy ‖ ̃̄𝑧𝑔‖ ≤ 1% (solid lines),
‖ ̃̄𝑧𝑔‖ ≤ 10% (dashed lines), and ‖ ̃̄𝑧𝑔‖ ≤ 100% (dotted lines) as function of
the convexification parameter 𝜌: reference solver (crosses, red), Newton solver
(circles, blue), and conjugate gradient solver (squares, black)

vector control in presence of a disturbance ‖𝑤‖ = 5%V𝑟. Additonal
test-bench results of direct 𝜃 and 𝜔 estimation (with output pll
filtering) are available in literature for pwm control [1], fcm-mpc
[2], and induction machine [4].

B. Numerical solver convergence and performance
Real-time capable solvers are investigated and typical behavior

is reported in Fig. 5. In Fig. 5(a) and Fig. 5(b), the conjugate
gradient method is shown to converge for any 𝑧𝑔 ∈ 𝒬. In Fig. 5(c)
and Fig. 5(d), the Newton method is shown to converge at a much
faster rate for 𝑧𝑔 ∈ 𝒵, except for 𝑧𝑔 ∈ 𝒬 ∖ 𝒵. The reference
solver uses the Newton method for 𝑧𝑗 ∈ 𝒵 for performance and
the conjugate gradient method for 𝑧𝑗 ∈ 𝒬 ∖ 𝒵 to expand the
feasible initial guesses (Fig. 5(e) and Fig. 5(f)).

The real-time performance of the solvers is shown in Fig. 6,
where each marker corresponds to 1 million random operation
points (𝜃, 𝜔, 𝑖𝛼𝛽, and ̇𝑖𝛼𝛽) and the normalized initial guesses
satisfy ‖ ̃̄𝑧𝑔‖ ≤ 1% (solid lines), ‖ ̃̄𝑧𝑔‖ ≤ 10% (dashed lines), and
‖ ̃̄𝑧𝑔‖ ≤ 100% (dotted lines). The results are plotted as function of
the convexification factor 𝜌. Fig. 6(a) show the success rate such
that 𝑧 can be identified. As expected, the success rate increases
significantly at high 𝜌 as the cost function becomes essentially
convex. The reference solver (and Newton method) achieve a
success rate exceeding 98.5% and 93.5% for 1% and 10% initial
errors, respectively (these results include low speed cases without
perturbation).

The execution time is approximately 5μs for one Newton step
and 2μs for one conjugate gradient step per iteration. For 𝜌 < 105,
the reference solver (and Newton method) require 3 to 5 iterations

𝑁𝑥 to converge resulting in 15μs to 25μs total execution time 𝑇𝑥.
In practice, the solver iterations can be limited to a maximum
value to guarantee a maximum execution time.

VII. Conclusion
This paper develops the local identifiability theory such that

direct estimation can obtain parameters instantaneously, i.e. within
one sampling period. We show that parameters can be uniquely
identified if the cost function formulation is strictly convex at
the parameter value and an initial guess lies in its quasiconvex
neighborhood. The formulation is shown to be robust in the sense
that a bounded disturbance results in a bounded estimation error
if the cost function is strictly convex in a neighborhood of the
estimate. The concept is applied to position and speed estimation
in synchronous motor drives, where 3-5 solver iterations are
sufficient to identify the parameters with high precision (10−4

error), and operation is feasible with a single solver iteration.
We demonstrate that the parameters can be identified in more
than 98.5% of all possible operation points “instantaneously”,
i.e. with the measurements of one sampling instant, based on
a reasonable initial guess (position and speed are not globally
observable). In the remaining cases, an estimates can be issued
through extrapolation.
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