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Abstract

Degradation in lithium-ion batteries is traditionally characterized with the pseudo open-circuit voltage

(pOCV) or incremental capacity (IC) but these methods have hours-long diagnostics times and cannot

easily measure impedance change. It is shown here that a pulse with amplitude 1 C-rate can perform both

IC and impedance characterization in just 2 minutes. Pulses and C/20 pOCV from 6 lithium-ion cells at 1328

unique combinations of state of charge, state of health, and temperature are evaluated using the convolution-

defined diffusion equivalent circuit model, ridge regression, and neural networks. Ridge regression of the IC

extrema and the pulse harmonics predicts SoH and nominal SoC with less than 1% and 6% error, respectively.

Individual contributions of the ohmic, charge transfer, and diffusion overpotentials, as well as open-circuit

voltage or hysteresis, are quantified for the charge pulse. Neural networks reconstruct IC extrema from the

pulse harmonics with less than 1% error. The pulse response therefore reflects internal kinetic parameters

and electrode phase transitions which are best uncovered using neural networks. Our results extend the uses

of pulsing and suggest novel methods for degradation diagnostics in battery management systems.

Keywords: Lithium batteries, Overpotentials, Degradation, Incremental capacity, Pulse

characterization

1. Introduction

Non-invasive and minimally-disruptive lithium-ion battery (LIB) characterization is key to effective bat-

tery management. Though advances in LIB diagnostics have enabled real-time state-of-charge (SoC) esti-

mation, capacity fade estimation with state-of-health (SoH) requires longer time scales. Furthermore, LIB

degradation results from numerous coupled internal and external mechanisms that cannot be easily observed
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Nomenclature

Abbreviations

CDD Convolution-defined diffusion

ECM Equivalent circuit model

EIS Electrochemical impedance spectroscopy

ICA Incremental capacity analysis

LAM Loss of active material

LIB Lithium-ion battery

LLI Loss of lithium inventory

ML Machine learning

NE Negative electrode

NN Neural network

OCV Open circuit voltage

PE Positive electrode

PIAML Pulse-injection-aided machine learning

pOCV Pseduo open circuit voltage

RC Resistor capacitor

RR Ridge regression

SoC State of charge

SoH State of health

Roman symbols

a Weighting scalar

AD Diffusion constant

b Bias vector

Cn Capacitor n

L Total number of layers

Q Maximum cell capacity [Ah]

q Remaining cell capacity [Ah]

Q0 Initial maximum cell capacity [Ah]

r Residual vector

R2 Coefficient of determination

Rn Resistor n

t Time [s]

tp Pulse length [s]

V Observed voltage [V]

VD Diffusion overpotential [V]

Vs Ohmic overpotential [V]

Vct Charge transfer overpotential [V]

Vps Pseudo open circuit voltage [V]

W Feature weight matrix

w Feature weight vector

X Data matrix

x Data vector

Y Output vector

y Output scalar

Other symbols

` Layer number

V̂ Predicted voltage [V]

λ Regularization parameter

V Voltage-time product [V·s]
σ Activation function

θ Parameter vector

ṽ Voltage harmonics [V]
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Figure 1: Diagram representing frameworks for estimating degradation modes, showing novel contributions of this article

with non-invasive techniques [1, 2]. This causes considerable uncertainty in estimating the instantaneous

degradation rate – an ideal quantity that remains unobservable.

Currently, LIB degradation is described using a multi-level framework containing metrics, modes, and

mechanisms [3]. Each level provides more powerful diagnostics and prognostics of degradation. In theory,

the modes of capacity fade such as the loss of lithium inventory (LLI) or loss of active material (LAM) can

be used to determine the future SoH trajectory more accurately than just the SoH prior history. Similarly,

mechanisms such as solid-electrolyte interphase formation or particle fracture are good predictors of the

modes. Non-invasive techniques for multi-level characterization remain elusive, especially for modes and

mechanisms.

Open-circuit voltage (OCV) or pseudo-OCV (pOCV) methods are the primary non-invasive laboratory

technique for obtaining degradation modes and metrics. The pOCV curve is obtained by discharging the cell

from 100% SoC at a low C-rate – defined as the current relative to the nominal cell capacity – such as C/10

or C/20 [4]. This not only yields the cell SoH but also encodes information about the positive electrode (PE)

and negative electrode (NE) phase transitions. Half-cell models show that LAM and LLI may be estimated

entirely from the predicted electrode degradation [5, 6]. Underpinning the results from half-cell models is

incremental capacity analysis (ICA), studied extensively by Dubarry et al. [7, 8]. The IC curve is defined as

the inverse-derivative of the pOCV with respect to remaining charge capacity. Phase transitions – plateaus

3



Figure 2: Diagram representing data collection and online tasks for pulse characterization with CDD-1RC model and PIAML

in the pOCV – are represented by IC extrema [9]. In many applications pOCV and ICA diagnostics are

too disruptive. Though machine-learning based partial-charging methods have reduced testing time to less

than an hour [10, 11, 12], and machine learning can reduce the need for pOCV acquisition [13], real-time

ICA remains elusive.

Though OCV techniques can estimate modes such as LLI and LAM, impedance change is best mea-

sured with pulse perturbation [14]. It has long been used to characterize equivalent-circuit model (ECM)

parameters of battery cells. Pulsing can also be used to identify overpotentials – ohmic, charge-transfer,

and diffusion – when the voltage response is fitted with time-domain diffusion ECM [15]. Overpotentials are

the primary cause of heat generation in LIB cells [16, 17] and reflect the kinetics of ion transport. They are

thus strongly linked to degradation [18, 19, 20]. Until recently, overpotential analysis was best performed in

the frequency-domain with electrochemical-impedance spectroscopy (EIS) and the Randles-Warburg ECM

[21, 22]. Pulsing could provide the same information as EIS in a fraction of the time [23].

The uses of pulse perturbation extend beyond parameter identification. A neural network (NN) can

accurately estimate cell states and even predict the lifetime of a LIB cell when trained on the cell’s pulse

voltage responses [24, 25]. This technique – named pulse-injection-aided machine learning (PIAML) – has the

potential to uncover deeper levels of degradation beyond the metrics [3]. While this has been hypothesized

in previous studies, the electrochemical links between pulsing and degradation are poorly defined. Hence

our question — why are pulses such a powerful characterization technique?

To answer this we demonstrate our premise: that the pulse voltage response encodes signatures from ion
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Figure 3: Data collected from six cells, showing incremental capacity curves for (a) S1 and (b) S2, (c) capacity fade for both
stressors, and pulse voltage response harmonics for (d) S1 and (e) S2

transport dynamics and electrode degradation. We apply the convolution-defined diffusion (CDD) model

and PIAML to experimental LIB degradation data to extract overpotential contributions, SoC, SoH, and IC

features from thousands of pulses. From this we conclude that the CDD model and PIAML are sufficient to

characterize degradation modes in LIB cells, as represented by our contributions to the framework in Fig.

1. This would slash degradation diagnostics time from several hours to 2 minutes.

Theoretical concepts are presented in Section 2. Results are presented and discussed in Section 3. The

paper is concluded and future work described in Section 4.

2. Theory

This article explores the use of pulse injection in obtaining degradation modes. An important link

between pulse injection and LLI and LAM is identified, summarized in Figs. 1 and 2. Pulse injection is

traditionally only associated with impedance change. The CDD-1RC overpotential model was designed for

this purpose: to accurately measure and disaggregate overpotential impedance in the cell without any prior
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knowledge of the system. Ohmic, charge transfer, and diffusion overpotentials are modelled for a charge

pulse with 4 parameters: R0, R1, C1, and AD [26]. While these transient dynamics are well-captured, the

CDD model yields little information about the steady-state OCV behavior.

The OCV represents the equilibrium voltage attained by cell and is almost entirely determined by

the lithiation of the two electrodes. As electrode lithiation fraction increases from 0 to 1, multiple phase

transitions occur. Analysis of these transitions from the pOCV and IC curves yields LLI and LAM [8, 6].

By reconstructing the IC curve from pulsing, degradation diagnostics can be greatly simplified.

The experimental dataset is obtained from cells cycled with two distinct sets of stressors, named S1 and

S2, represented in Fig. 2. Key diagnostics such as C/20 IC curves, capacity fade, and 1 C-rate pulse voltages

are shown in Fig. 3. From the IC curves extrema points are extracted, labelled in Figs. 3(a)-(b). Each of

the hundreds of pulse voltages has a unique SoH and SoC. Only pulse harmonics are used, shown in Figs.

3(d)-(e), obtained by subtracting the mean voltage from the raw pulse data. This is to eliminate effects of

the OCV bias and ensure that the data only reflects overpotentials and the OCV or hysteresis variation. It

may also improve data regularization.

Fundamental relationships between the data are extracted through PIAML implemented with ridge

regression (RR). RR predictions are generally given by

y = wT
RRx (1)

where y ∈ R is the output, wRR ∈ Rn is the feature vector, and x ∈ Rn is the input data vector, and n is

the length of wRR and x. Thus the output is a linear combination of the input data. Features are obtained

using

wRR = (λI +XTX)−1XTY (2)

where we choose λ = 0.1, X ∈ Rm×n is the matrix of training data, Y ∈ Rm is the vector of known outputs,

and m is the size of the training data, randomly selected as 80% of the total dataset. The remaining 20%

of the data are used to generate predictions in Fig. 4. Results from 10 trials are shown together. For the

output, SoH and SoC are considered.

Many conclusions may be drawn from Fig. 4. It can be seen from 4a that SoH is almost perfectly

predicted by the IC extrema. The individual feature weights are shown in 4d. Meanwhile, SoC is predicted

by pulse harmonics with 5.3% mean absolute error, shown in 4g. The most strongly weighted features as

shown in 4h are located at the current step transitions, but many mid-step features are also important.
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Figure 4: Plots showing ridge regression for predicting (a)-(b) SoH and (c)-(d) Nominal pulse SoC in the S2 dataset using IC
extrema (column 1), CDD-1RC parameters (column 2), pulse voltage (column 3), and selected feature vectors (column 4).

These are important findings in their own right — first, that the SoH a LIB cell may be characterized by

a simple linear combinations of the IC extrema; and second, that its SoC is roughly estimated without the

OCV bias and with only the transient dynamics.

The ECM parameter regression results in Figs. 4 and 4 also provide useful information. They show

that CDD-1RC parameters are correlated with but poor predictors of both SoH and SoC. This agrees

with the known behavior of overpotentials [27]. Since they are identified using the pulse harmonics, it

may be surprising that prediction accuracy from CDD parameters decreases significantly compared to direct

regression of the pulse voltage. This is partially due to modelling error, but also because the pulse harmonics

contain a significant characteristic not directly captured by overpotentials: OCV variation.

3. Results and Discussion

Here we demonstrate that pulses completely characterize overpotentials, OCV, and hysteresis, as well as

IC curves, meaning that all degradation modes could be identified from a pulse. Results for overpotential

analysis with the CDD are shown in Fig. 5. Results for IC reconstruction with PIAML are shown in Figs.

6 and 7. Generally, it can be seen that pulsing offers detailed information about battery degradation with

low computational complexity.
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Figure 5: Overpotential contribution percentages for (a)-(b) S1 and (c)-(d) S2, showing variation against cycle number in (a)
and (c) and the nominal pulse SoC in (b) and (d)
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Figure 6: IC reconstruction, showing (a) RR extrema identification with the S2 dataset, (b) NN training and validation curves,
(c) NN extrema identification with the S2 dataset, and (d) NN peak identification using both the S1 and S2 datasets
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Figure 7: Reconstructed S2 IC curves using extrema predictions, showing outputs from (a) Ridge regression, (b) Neural network,
and (c) Prediction error

Overpotential contribution percentages in the 60s charge pulse for both the S1 and S2 datasets are shown

in Fig. 5, plotted against cycle number and SoC. The ohmic overpotential dominates, followed by charge

transfer, OCV variation and hysteresis, and diffusion. As the cells degrade, charge transfer and diffusion

become more significant. This could reflect solid-electrolyte layer formation or electrode structural change.

At higher SoC, diffusion increases, corresponding to high lithiation in the NE. Charge transfer increases

at low SoC, particularly evident in S2, where there is a distinct low-SoC branch beyond cycle 2000. This

may reflect high lithiation in the PE impeding ion transport. OCV and hysteresis variation is calculated

as the remaining voltage after subtracting the overpotentials from the observed voltage. It is particularly

significant at low SoC and SoH. Peaks in the OCV contribution may reflect IC or differential voltage peaks.

ICA with RR- and NN-based PIAML is shown in Figs. 6 and 7. While RR identified a correlation

between the pulse harmonics and IC extrema, it is unable to accurately reconstruct the extrema points,

attaining a coefficient of determination R2 = 0.364. Yet with a NN, all of the extrema points are identified

with R2 = 0.911. Error comparison in Fig. 7 shows that the NN is consistently more accurate and less

sensitive to the peak location. The NN is also able to distinguish between stressors; in Fig. 6d the IC

extrema are accurately estimated with NN-PIAML regardless of the cycling history of the cell. There must

be some signature in the pulse harmonics that the NN has learnt from.

To return to our original question and explain why the IC prediction results with NN-PIAML are highly

accurate, recall the RR results in Fig. 4. The inner product of the pulse voltage and a constant feature

vector is a good predictor of the nominal SoC. Each SoC level therefore leaves a unique signature in the

pulse. To obtain the IC curves, ML is, in a sense, tasked with predicting the cell OCV over the entire

range of SoC. Whereas RR uses a feature vector to predict a single SoC, the NN uses multi-dimensional

matrix transformations to obtain the entire SoC characteristic. It is hypothesized that OCV or hysteresis
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Table 1: Panasonic NCR18650PF cylindrical cell specifications [28]

Characteristic Value Units
Positive electrode LiNi0.8Co0.15Al0.05O2 —
Negative electrode Carbon (graphite) —
Rated capacity 2.7 Ah
Cut-off voltage 2.5 V
Max charge voltage 4.2 V
Cut-off current 55 mA

dynamics during the pulse, coupled with overpotentials, provide the NN sufficient information to learn the

LIB cell’s degradation modes. Thus the pulse harmonics have sufficient information to estimate a wide range

of degradation metrics and modes — SoC, SoH, overpotentials, and IC features.

4. Conclusion

We examined the uses of pulse perturbation for diagnosing cell states, ion transport phenomena, and

electrode degradation. The CDD ECM and PIAML implemented with RR and NN were applied to 1328

samples of experimental pulse data, showing that a 2 minute bipolar pulse can predict the IC features with

a 0.911 coefficient of determination. To further understand the results, we disaggregate the charge pulse

harmonics into 4 electrochemical dynamics and obtain a quantitative measure for each contribution.

This article extends the capabilities of PIAML diagnostics while providing greater understanding of its

high performance. Several areas of research remain. Determining the optimal pulse shape, length, and

amplitude could facilitate real-world implementation. PIAML may be able to characterize degradation

mechanisms if each electrochemical parameter in the cell contributes a unique signature to the voltage

response. In this case the NN would be an ‘inverted’ battery model. With deeper, more accurate, and faster

degradation diagnostics, battery lifetimes and charge capacities will benefit greatly.

Methods

Data collection and processing

Six commercial Panasonic NCR18650PF cells, with specifications in Table 1, were cycled with a Neware

BTS4000 series 5V6A cycler using two stressors. Stressor 1 (S1) cells were cycled from the lower cutoff 2.5

V to mid-voltage 3.7 V at 7◦C and Stressor 2 (S2) cells were cycled from mid-voltage to the upper cutoff

4.2 V at 40◦C in 25 L temperature chambers with a maximum range of [5, 60]◦C. Tab temperature at the

battery terminals was not considered. The constant-current cycling rate was 1 C-rate, 2.7 A. The C/20

pOCV and pulse train are obtained every 100 cycles, meaning each IC curve corresponds to multiple pulses.
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Bipolar charge-rest-discharge-rest pulses are applied similarly to the galvanostatic intermittent titration

technique [29], at SoC in the range [0.05, 1] with amplitude 1 C-rate, length 2 min, and sampling rate 10

Hz. There are 363 pulses for S1 and 965 for S2. As observed in Fig. 3, S1 cells pass the knee-point at 1500

cycles, while S2 cells degrade much more slowly, only passing the knee at 4000 cycles. A short break at 3000

cycles explains the discontinuity in the S2 capacity fade and overpotential plots in Fig. 5.

Cell SoH and SoC are obtained through coulomb counting. Integration of the current during the pOCV

yields the time-varying maximum cell capacity Q(t) so SoH is given by

SoH =
Q(t)

Q0
(3)

where Q0 is the capacity at t = 0. For each pulse, the nominal SoC is given by

SoC =
q(t)

Q(t)
(4)

where q is the remaining charge capacity. The IC is obtained by taking the inverse derivative of the pOCV

Vps with respect to the instantaneous

IC =
dq

dVps
(5)

A Savitzky-Golay filter is used for smoothing. For each IC curve the peaks and troughs (extrema) points are

labelled sequentially. Since the S1 cells do not have the low-voltage peak and trough, S1 labels begin from

3. This is due to low-temperature effects — S2 cells only lose peak 1 after significant degradation. Finally,

the voltage harmonics ṽ are obtained with

ṽ = V −mean(V ) (6)

where V is the raw observed pulse voltage vector.

Overpotential contribution analysis

The CDD-1RC model [26] is composed of 4 equivalent circuit elements that model the ohmic, charge

transfer, and diffusion overpotentials, Vs, Vct, and VD, such that the terminal voltage is given by

V̂ (t) = VOC(t)− Vs(t)− Vct(t)− VD(t) (7)

12



where VOC is the estimated OCV change during the pulse [15]. Circuit elements are fitted through the

MATLAB scatter-search global optimization method [30],

minimize f(θ)

subject to θ � 0

(8)

We define

f(θ) = ‖r‖22 + a
∥∥r′∥∥2

2

r(k) = yk − ŷk(θ)

r′(k) = r(k + 1)− r(k)

θT = (R0 R1 C1 AD)

θTmax = (1 1 3000 0.1)

θT0 = (0.1 0.1 1000 0.01)

(9)

where k indexes the vectors, θ is the parameter vector, we set the weighting a = 1, and r is the residual

vector. Parameters are bounded by 0 with upper bounds θmax and initial guesses of θ0.

To obtain the overpotential contributions, the voltage-time integral product V during the pulse is calcu-

lated for each overpotential during the charge pulse represented as

V =

∫ tp

0

|V (t)|dt (10)

where tp is the pulse length, 60 s. The OCV variation and hysteresis contribution is then calculated as the

voltage which has not been captured by the overpotentials,

VOC =

∫ tp

0

|ṽ(t)|dt− Vs − Vct − VD (11)

The contribution fractions are calculated using

contribution fraction =
V

VOC + Vs + Vct + VD
(12)
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Table 2: Hyperparameters and NN architecture with batch normalization

Hyperparameter Value
Input nodes 1210
Hidden layers 2
Nodes per hidden layer 256
Output nodes 7
Total number of parameters 382186
Activation function Swish
Network weight constraint 20
Optimizer Adam
Learning rate 0.001
Batch size 64
Minimum training epochs 4000

Neural network design

Feedforward neural networks are popular ML tools composed of several layers of nodes, network weights,

biases, and activation functions. Within the each layer the node outputs are represented as

x` = σ(W`x`−1 + b`) (13)

where Wi is weight matrix connecting nodes in layer ` − 1 to layer `, x`−1 is the output vector from the

previous layer, b` is the bias vector, and σ is the activation function governing node behavior. Note that

` = 0 represents the input layer. Final output predictions are given by

ŷNN = WLxL + bL (14)

where L is the total number of layers.

Hyperparameters used to design the NN for IC feature estimation are shown in Table 2.It is noted that

the NN architecture is ‘wide’ and ‘shallow’, with only 2 hidden layers. Data is split randomly into 64%,

16% and 20% subsets for training, validation, and testing. Training was performed using the Keras module

of the Python Tensorflow package. The testing subset is used to obtain the final results and is presented to

the NN as unseen inputs. For evaluation the coefficient of determination R2 is calculated using

R2 = 1− ‖Y − ŶNN‖2

‖Y −mean(Y )‖2
(15)

which represents the complement of the ratio between the sum of the squared residuals and the total sum

of squares.
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[22] S. Gantenbein, M. Weiss, E. Ivers-Tiffé, Impedance based time-domain modeling of lithium-ion batteries: Part I, J. Power

Sources 379 (2018) 317–327.

[23] A. G. Li, M. M. Wu, Y. A. Fahmy, M. Preindl, Fast time-domain impedance spectroscopy of lithium-ion batteries using

pulse perturbation, IEEE Transportation Electrification Conference (ITEC) (2022).

[24] A. G. Li, W. Wang, A. C. West, M. Preindl, Health and performance diagnostics in Li-ion batteries with pulse-injection-

aided machine learning, Appl. Energy 315 (2022).

[25] A. Weng, P. Mohtat, P. M. Attia, V. Sulzer, S. Lee, G. Less, A. Stefanopoulou, Predicting the impact of formation

protocols on battery lifetime immediately after manufacturing, Joule 5 (2021) 1–22.

[26] A. G. Li, M. Preindl, Interpretable real-time modelling of the diffusion overpotential in lithium batteries, IEEE Trans.

Transp. Elec Early Access (2023).

[27] V. J. Ovejas, A. Cuadras, State of charge dependency of the overvoltage generated in commercial Li-ion cells, J. Power

Sources 418 (2019) 176–185.

[28] N. Togasaki, T. Yokoshima, Y. Oguma, T. Osaka, Prediction of overcharge-induced serious capacity fading in nickel cobalt

aluminum oxide lithium-ion batteries using electrochemical impedance spectroscopy, J. Power Sources 461 (2020).

[29] J. Kim, S. Park, S. Hwang, W. Yoon, Principles and applications of galvanostatic intermittent titration technique for

lithium-ion batteries, J. Electrochem. Sci. Technol. 13 (2022) 19–31.

[30] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, R. Marti, Scatter search and local NLP solvers: A multistart

framework for global optimization, INFORMS Journal on Computing 19 (2007) 328–340.

16


	Introduction
	Theory
	Results and Discussion
	Conclusion

