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Abstract—Estimation of electrical losses for machines
is important to operating them efficiently. Although
copper loss is typically the dominant form of electrical
losses in an electric machine, core loss also contributes
significantly especially at high speed. In this study, two
simple analytical model for core loss are proposed for
the wound rotor synchronous machine using the least
squares method and validated through FEA simulation.
The proposed core loss estimation methods have 12%
and 53% average error over all operating points of the
machine. They are extremely light computationally and
use very few coefficients making them viable options for
real-time controllers for various applications.

Index Terms—Loss Minimization, Motor Parame-
ters, Core Loss, Wound Rotor Synchronous Machine

I. Introduction
Reference generation maps for electric machines take

some combination of torque and (sometimes) speed and
output a set of currents that minimizes the electrical losses
of the machine. The dominant losses are copper loss and
core loss, which are generally proportional to torque and
speed, respectively.

Selecting the most optimal (efficient) reference current
given a speed and torque requires an accurate representa-
tion of these losses over the full operating range of currents
the machine is rated for. In the most generalized sense,
an attempt to differentiate these losses by relating them
to a quantity proportional to the product of speed and
torque, each to an arbitrary power, can be made and is
very effective [1]. Mapping these references to a useful
format for a microcontroller (MCU) to use in real-time
such as a look up table (LUT) or piecewise affine (PWA)
map is a seperate and interesting challenge [2], [3].

These maps are complex, not easily built, and are
designed specifically to create offline efficiency maps to
load and run on a microcontroller, such as MTPA. They
also require a large dataset of the machine speed, torque,
current, copper loss, and core loss, which may not always
be available to machine control engineers. These are typi-
cally obtained through FEA and/or experimentation.

Machine design engineers design machines to minimize
core loss by analyzing the effects of eddy currents, hyster-
isis, and armature reaction effects with different geome-
tries, materials, and laminations [4]–[7]. For the wound

rotor synchonrous machine (WRSM) this is especially
important as its primary application until recently has
been MVA-sized machines for power generation. In these
applications, the electrical speed is fixed, and the core
losses can be optimized for this specific speed.

The WRSM has seen a recent increase in popularity in
automotive applications, as it is a compromise to the high
power density (efficient and expensive) Permanent Magnet
Synchronous Machine (PMSM) and low power density
(inefficient and cheap) Induction Machine (IM), which
are the two most popular machines in space [8], [9]. An
interesting developement in WRSMs is the use of hairpin
windings to increase slot fill factor [10], but increases core
losses and introduces additional manufacturing complexity
[11]. Automotive applications for machines require efficient
use for a wide range of speeds and torques, requiring a
revisit to core and copper loss models for the machine.
For this reason, it is not enough to simply design WRSMs
to minimize copper loss, but for core loss as well. This has
already been studied and combined with MTPA (maxi-
mum torque per ampere) for the PMSM machine in a
so-called Maximum Efficiency per Ampere (MOPA) [12]
among other names, however the work is unvisited for the
WRSM.

Fig. 1: WRSM cross section showing a saturated flux
density B distribution in Tesla at iq = 1(pu) (left), and
id = 1(pu) (right)

An understanding of core losses with a simple model
(in addition to copper losses) can be used to predict the
temperature of the machine, especially at high speeds
when core loss is most significant. Power dense wound
field machines, especially those with brushes, must have
their temperature maintained to avoid mechanical failure.



Furthermore, an increase in temperature in the machine
increases its thermal resistance, which decreases efficiency
and leads to even more temperature increase. The ability
to accurately and quickly predict thermal losses can more
quickly inform cooling measures to begin, whether air or
liquid [13], [14].

In this study, two simple core loss models are proposed
which utilize the least squares method for determining a
quadratic core loss function. The core loss is proportional
to the square of the machine speed and square of the
machine flux. The proposed models have 12% and 53%
average error when compared to FEA. The models require
only 9 or 729 coefficients each. Proposed use-cases of the
models are maximum efficiency point selection, use in real-
time control, and FEA outlier detection.

The paper is organized as follows, the basic machine
model is introduced in Section II, core loss modelling is
discussed in Section III, results for a 65 kW machine are
shown in Section IV, analysis of the results against an
FEA map are in Section V, and the paper is concluded in
Section VI.

II. Machine Operation
The current in a three-phase WRSM has two parts,

the AC stator current idq which utilizes the dq-axis from
the power-invariant Clarke-Park transform, and DC rotor
(sometimes called field) current ir. The rotor is aligned
to the stator d-axis. These are combined into the column
vector irdq = [ir id iq]T ∈ R3.

The relationship between the current irdq ∈ R3 and flux
of the machine λrdq ∈ R3 is non-linear, and has saturation
and cross saturation effects. This can be modelled by the
continuous nonlinear function, and the flux distribution at
full current is shown in Fig. 1.

λr = fr(ir, id, iq), (1a)
λd = fd(ir, id, iq), (1b)
λq = fq(ir, id, iq), (1c)

The dq-axis stator current of the machine is limited by
a stator rated current is,r, while the rotor axis current
is limited by a rated rotor current ir,r. These limits are
typically set by thermal constraints. The current set I is
thus constrained by a cylindrical shape.

By (1) the flux set is constrained to

λ ∈ Λ = {λrdq ∈ R3 | g ◦ Λ = I}. (2)

where g(λ) = i is the inverse function of (1).
The torque per pole pair of the machine is defined by

τp(i, λ) : R6 → R

τp(i, λ) = iT Jλ, (3)

where J is the stator cross product matrix

J =

 0 0 0
0 0 −1
0 1 0

 (4)

Fig. 2: πfe,glo (Left) core loss vs torque and speed, (Right)
core loss vs stator flux (fixed speed)

and p ∈ R is the number of pole pairs of the machine.
The maximum torque Tmax and speed ωmax are gen-

erally limited by mechanical constraints. The rotor and
stator can be “flux weakened” in the sense of a PMSM
such that electrically there is one maximum torque (at ir,r

and is,r) and a theoretically unlimited electrical speed.

III. Core Loss Models
The most general and possibly most common core loss

(often times referred to as iron loss, or πfe) model is the
Steinmetz Equation, which in its simplest form is

πfe = kfa
s Bb

m (5)

where k is a coefficient, fs is the switching frequency, Bm is
the peak value of the magnetic flux density. For machines,
the machine speed is the rate at which the magnetic flux
of the core material changes, so ω replaces fs. Flux density
Bm is proportional to the more commonly used machine
flux λ which leads to the equation

πfe = kωaλb. (6)

This equation is too general to apply to a real-world
system, the choice of discrete exponents a and b for a
given number of terms is done to best fit magnetic flux and
frequency to the core loss of the system being tested. There
are many variations of (6) used in motor loss modelling,
but one called the Bertoti iron loss formula [12] uses terms
representing hysteric loss, lamination thickness, and excess
loss with coefficients (a, b) of (2, 1), (2, 2), (1.5, 1.5) as

πfe = khωλ2 + k2
dω2λ2 + keω1.5λ1.5. (7)

The relationship between terms in (6) and coefficients
(a, b) is an open research question [15]. This equation is
problematic for machines that have coupled flux, as it is
nontrivial compute non-integer matrix exponents.

We propose two core loss models which are very simple.
The first is

πfe = kω2λ2, (8)

which if we consider λ is a [3×1] matrix from (2) becomes

πfe,glo = ω2λT Gλ (9)



Fig. 3: (first row) πfe FEA, (second row) πfe,glo, (third row) πfe,bin, (fourth row) error between πfe and πfe,glo, (fifth
row) error between πfe and πfe,glo

where the coefficient k is distributed into the matrix G.
Because the exponent a = 2, the squared term of flux λ is
simple to compute. A linear term a = 1 could potentially
be added. This model can be called the global model,
or πfe,glo. Torque and speed both contribute to this πfe

equation, speed proportional to the ω2 term and torque
by the flux term λ in (3). The trend of the model against
torque, speed, and flux is shown in Fig. 2.

The second model is

πfe,bin =


ω2λT Gq,1λ + ωλT Gl,1λ + λT Go,1λ ω ∈ Ω1

ω2λT Gq,2λ + ωλT Gl,2λ + λT Go,2λ ω ∈ Ω2
...

ω2λT Gq,nλ + ωλT Gl,nλ + λT Go,nλ ω ∈ Ωn

(10)

where the Ωj is a subset of electrical speeds of the machine,
Ωj = {ω ∈ R | ωj,min < ωj ≤ ωj,max}. The speeds of the
machine can be evenly or unevenly distributed into n sub-
sets which cover all machine speeds Ω = {Ω1 ∪Ω2 ∪ ...Ωn}.
The model (10) has n piecewise quadratic equations which
each have three matrices of coefficients corresponding to
the quadratic dependence on speed (Gq), linear depen-
dence on speed (Gl), and no dependence on speed (Go),
and can be formulated to be continuous. This core loss
model is binned by speed, and thus denoted πfe,bin.

For the global model (9) the matrix G is obtained by
first having a set of available loss datapoints {πfe, λ, ω} and
solving the following convex optimization problem using



Fig. 4: Core loss vs speed and torque, color is core loss
error vs FEA, πfe,glo

all points

minimize ||ω2λT Gλ − πfe|| (11a)
subj. to G(i,j) ≥ 0, (11b)

where G is the optimization variable. The only constraint
is that that coefficients must all be non-negative. This
is the least squares solution for overdetermined systems.
The optimization is run over all datapoints (many speeds)
to obtain an “averaged” G which best fits the loss to
all data. The components of G along the diagonal, i.e.
G(1,1), G(2,2), G(3,3) model the self-induced core loss, i.e.
G(3,3) quantifies how much loss is contributed from the q-
axis flux λ2

q. In many cases the rotor is excited with a DC
current, which produces a constant flux λr, in which case
the core loss from just λ2

r will be very small, and G(1,1) will
be negligible. Non-diagonal terms represent losses induced
from flux-coupling between different axis.

For the second model, the Gq,j , Gl,j , and Go,j matrix
coefficients are computed per speed ωj by

minimize ||ω2λT Gq,jλ + ωλT Gl,jλ + λT Go,jλ − πfe||
(12a)

subj. to Gq,j,(i,k) ≥ 0 (12b)
Gl,j(i,k) ≥ 0 (12c)
Go,j(i,k) ≥ 0 (12d)
ω ∈ Ωj . (12e)

In this model the speed is explicitly set to range speci-
fied in (12e), which makes each coefficient matrix speed-
independent. Additional constraints can be added to en-
sure continuity. The optimization problems (11) and (12)
can be solved offline to build the core loss models (9)
and (10) respectively, which can then be loaded onto a
microcontroller for real-time core loss evaluation.

Fig. 5: Core loss vs speed and torque, color is core loss
error vs FEA, πfe,bin

IV. Results

The two core loss models proposed in Section III were
run on a 65 kW WRSM with parameters shown in TABLE
I. The FEA dataset used had 498,606 FEA datapoints
{πfe, λ, ω} corresponding to the full current range of the
machine irdq ∈ I and 81 specific speeds ωj , each speed
corresponds to one speed range Ωj , so there are n = 81
piecewise equations to (10). The values for G were rela-
tively small for all terms except G(2,2) and G(3,3) which
are the self-induced stator core losses of the d-axis and q-
axis respectively. This is because for this specific WRSM,
the rotor is excited by DC current. The ouptut losses from
both functions are shown in the flux domain in Fig. 3.
The quadratic relationship between core loss and flux is
apparent by the circular loss rings of the stator core loss.
The quadratic relationship between speed and core loss is
also apparent by the increasing losses per speed (columns
left to right).

TABLE I: WRSM Motor Drive Parameters

Parameter Value

Turns ratio Nf /Ns 39
Pole pairs p 2

Stator resistance Rs 11.732 mΩ
Rotor resistance (stator referred) Rr 5.461 mΩ

Shaft inertia 22.76E-3 kg m2

Nameplate r-axis inductance Lr 1.956 mH
Nameplate d-axis inductance Ld 2.420 mH
Nameplate q-axis inductance Lq 0.789 mH

Base speed 3000 1/min
Max speed 12000 1/min

DC-link voltage 325 V
Maximum power 65 kW
Maximum torque 220 Nm



V. Analysis
Core loss error for the analytical methods and the FEA

is shown are torque-speed domain in Fig. 4 and Fig. 5, and
in stator flux domain in Fig. 3. Plots showing the error of
both core loss models averaged by speed are shown in Fig.
6 and by flux in Fig 3. The error used is the 2-norm error,
which is calculated as

error = ||πfe,analy − πfe,F EA||2
||πfe,F EA||2

, (13)

at low speed the analytical loss is ≈ 0 so the error appears
to be 100%. The error tends to decrease dramatically
for both models as speed is increased. The average error
for πfe,bin is 12% compared to an average error of 53%
for πfe,glo. The error tends to be very high at very low
speeds, which are infrequent operational areas in most
drive cycles.

Each G matrix has nine coefficients ([3×3]). So although
the binned method has much lower error, by (10) it has
considerably more coefficients to store. Furthermore there
will be some computation time to determine which of the
piecewise equations to use. For these reasons, πfe,bin is
much more accurate, but considerably slower than πfe,glo

on a microcontroller. Reducing terms is an interesting
problem and an active area of research.

Fig. 6: Average core loss error between FEA and analytical
models by speed

The benefits of these two core loss models versus more
complex models are 1) Speed of computation 2) Relatively
low error 3) No need to know complex machine geometry
and 4) Cross coupling core loss is captured. These benefits
allow for a wide range of potential applications including
fast maximum efficiency point selection, use a cost in a
real-time controller when moving between reference speed-
torques, and FEA outlier detection.

VI. conclusion
In this study two core loss models are proposed for

the WRSM. They are validated using an FEA simulation
of the machine, having error of 53% (global) and 12%
(binned by speed) respectively. These two core loss mod-
els are simple to compute, computationally light, allow

for flux coupling, and can be used for several real-time
applications. Topics of further study include: reduction
of coefficients, integration into a controller, and pareto-
mapping to a reference generation map.
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