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Abstract—High-performance control of Wound Rotor Syn-
chronous Machines (WRSM) motor drives requires a nonlinear
magnetic model that captures magnetic saturation and cross
saturation. This research proposes a generalized Piece-wise
Affine (PWA) magnetic and state-space model that divides
the current and flux space into simplices. PWA functions are
obtained from experimental or Finite Element Analysis (FEA)
data leveraging the Delaunay triangulation. Error margins and
memory requirements can be optimized for given applications
by varying the number of PWA functions. The PWA domains
can be irregular and an algorithm to optimize accuracy for
a given number of PWA domains is proposed. The PWA
performance is compared with a high-fidelity magnetic model.
Irregular PWA functions have lower error than regularly grid-
ded tables at reduced size: average error is improved from
15% to 1%; peak error is improved from 20% to 9%. Finally,
the PWA state-space model is validated on an experimental
testbench with a real-time Micro-Controller Unit (MCU).
The state space equations are verified using steady-state and
dynamic tests.

Index Terms—Flux estimation, Motor Parameters, Piece-
wise Linear Techniques, Wound Rotor Synchronous Machine
(WRSM).

I. Introduction
Electric machines produce torque by combining arma-

ture current and magnetic flux linkage. This research
focuses on the wound rotor synchronous machine (WRSM)
that produces the main magnetic field with a rotor wind-
ing. WRSMs are a class of electric machines used in
power generation, traction (e.g., electric vehicles, EVs),
and other industrial and residential applications. They
are used as both drives and generators, and are some-
times also referred to as wound field synchronous ma-
chines (WFSM), among other names (WFSG, WRSG,
RRSM, RRSG, EESM). They have several advantages over
PMSMs including: higher level of controllability due to
their ability to modulate rotor flux, a large constant-power
speed range, and increased cost-effectiveness given that no
expensive, rare-earth magnets are required in production.
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Additionally, the rotor flux can be controlled to correct the
power factor of the machine, which can lower the volt-amp
(VA) rating on the system inverter [1]. This modulation
can also be used to increase the stator current required for
low speed, high torque operation, a feature advantageous
for reducing cost in electric vehicles (EVs) [2]. For decades
WRSMs have been used in power generation (10 MVA -
2200 MVA) [2], [3], while more recently it has proved its
effectiveness in the EV space. The Renault Zoe vehicle has
used WRSMs since 2012 [4].

However, WRSMs have certain drawbacks when com-
pared to PMSMs including: higher copper losses due to
the added rotor windings, and increased mechanical com-
plexity. Brushes and slip rings limit power flow to the
rotor (hence power density) due to thermal constraints,
although there are designs utilizing wireless power trans-
fer [5]. Finally, WRSM have a strong (nonlinear) coupling
between the direct (d) and rotor (r) dimension. This
coupling tends to require accurate models and is shown
in Fig. 1 and Fig. 2.

Electric machines use ferromagnetic materials to max-
imize and channel magnetic flux. Modern machines aim
at minimizing core materials to reduce motor weight and
cost. Such machines tend to operate non-linear magnetic
regime in general and exhibit saturation and cross satu-
ration [5]–[13]. The relationship between current and flux
linkage is modeled using Magnetic Models (MM) that are
also also referred to as flux linkage maps in literature. Such
maps tend to be linearized and expressed as inductances or
transfer functions for motor control. All controllers use an
explicit or implicit MM and control performance depends
on the MM accuracy, type of machine, and application
[14], [15].

There has been extensive study for MMs which can
be categorized into static (offline) and dynamic (online)
methods and can include other nonlinear drive-system ef-
fects such as switching harmonics and dead times [11], [13],
[14], [16], iron losses [13], [14], and machine temperature
[13], [14], [16]. Offline MM use one or a combination of
Finite Element Analysis (FEA) [8], [11], [16], analytical
calculations [7], [8], experimental values [6]–[8], [11], [13]–
[16], and current or flux estimation [12], [17] to measure
inductances at various operating points. The discrete val-
ues obtained by these methods are linked together using a
variety of methods, summarized in TABLE I. Online MM
use a combination of online-estimated parameters from
real-time measurements and an offline MM to produce a



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

TABLE I: Summary of Offline MM Linking Methods

Type of Link Linear Bidirectional Continuous Differentiable Saturation Cross-sat.

Linearized Inductance • • • •

Linearly Interpolated LUT • • •

Hermite and Spline LUT [16], [14], [15] • • • •

Polynomial Functions [11], [13] • • • •

Piece-wise Nonlinear Functions [6] • • • •

Other Nonlinear Functions [7], [8] • • • •

Piece-wise Linear (PWA) • • • • •

dynamic MM. This MM model has the ability to adapt to
temperature, switch dead time, PWM harmonics, aging,
and partial faults in real time. Some online estimation
techniques include Extended Kalman Filters [18], neural
networks [17], and Taylor Series approximations [12]. Both
MM methods are subject to computational and memory
constraints of the Digital Signal Processor (DSP), which
is used for control. The majority of WRSM controllers use
offline MM such as in sliding mode control [3], maximum
torque [19], passivity-based control [1], and predictive
control [20]. However, some WRSM controllers with online
MM have been studied using PI control [10] and deadbeat
control [12]. All of these controllers use a linear inductance
MM, which does not capture saturation.

This research introduces a MM expressed as Piecewise
Affine (PWA) functions and derives a PWA state-space
model for WRSMs. The approach has the potential to
capture any saturation effects and can be generalized
to any motor type. This paper is organized as follows.
The WRSM dynamic model using PWA is presented in
Section II. Formalization of the PWA functions between a
current and flux space and a method of dividing a large
datasets is described in Section III and IV respectively.
Static evaluation and performance on a DSP is shown
in Section V, dynamic evaluation using a WRSM bench
setup is demonstrated in Section VI, and Section VII is
the conclusion.

II. WRSM Model
The three-phase WRSM can be described dynamically

as a state-space model [21]. For formal simplicity and the
common challenges of displaying spaces higher than three,
this research focuses on the most common WRSM used in

Fig. 1: WRSM cross section showing a saturated flux
density B distribution in Tesla at iq = 1 pu (left), and
id = 1 pu (right)

Fig. 2: WRSM flux vs current: experimental (blue), ex-
ample linearization through origin (orange), example of
three-segment PWA (yellow)

motor drives: a neutral-point isolated machine (without
zero-axis flux and current) and without damper windings.
The equations to adopt this method for more variables
(zero-sequence current, damper windings) can be extended
using higher dimensions [22].

The voltage equations of the WRSM are [12], [23]

λ̇r = ur −Rrir = ūr, (1a)
λ̇d = ωλq + ud −Rsid = ωλq + ūd, (1b)
λ̇q = −ωλd + uq −Rsiq = −ωλd + ūq, (1c)

where ˙ is the d
dt operator; λr is the rotor, i.e. field, flux

linkage; λd, and λq are the d-axis and q-axis stator flux
linkages respectively; i and u are the currents and voltages
of the appropriate dimension; Rr and Rs are the rotor
and stator resistances; ω is the synchronous speed, i.e. the
electrical velocity of the machine.

Furthermore, we introduce the voltages ū that are the
terminal voltages compensated by the winding resistive
voltage drop. This concept can be generalized to include
compensation for inverter nonlinear behavior such as
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Fig. 3: PWA using 3× 3× 3, 4× 4× 4, 5× 5× 5 and 8× 8× 8 regularly sampled current grids: (left) λr vs id and id
sliced at iq = 0 pu, (middle) λd vs ir and id sliced at iq = 0 pu, (right) λq vs iq and ir sliced at id = 0 pu.

Fig. 4: Mesh of simplices Ij ∈ IM in current space (left),
and mesh of simplices Λj ∈ ΛM (right) in flux space

switch on-voltage drops and dead-times [11], [24]. These
effects and space harmonics, such as slotting effects, are
not included in this model, however can be included
by adding a fourth spatial dependency (position) to the
model. It is later shown in Section VI that the model is
sufficiently accurate even without these effects included.

The power-invariant Clarke transformation is used and
the magnetic axis of the field winding is the reference
angle of the Park transformation. In this framework, the
machine torque is

T = pi′Jλ, (2)

where p is the number of pole pairs, the flux is λ =
[λr, λd, λq]T ∈ Λ, the current is i = [ir, id, iq]T ∈ I, and J
is the cross coupling matrix

J =

 0 0 0
0 0 −1
0 1 0

 . (3)

The machine currents map onto machine flux with a
nonlinear map [21]

λr = fr(ir, id, iq), (4a)
λd = fd(ir, id, iq), (4b)
λq = fq(ir, id, iq), (4c)

that captures magnetic coupling between axis, magnetic
saturation, and cross-saturation.

Fig. 5: Reference implementation of a WRSM motor drive
(gray) with motor controller using PWA current-flux maps
(white)

These equations can be written as a standard state-
space systems using vector notation

λ̇ = Aλ+ Bū, (5a)
i = g(λ), (5b)

where the state is the flux λ, the input is the compensated
voltage ū = [ūr, ūd, ūq]T ∈ U , and the measurement is
the current i. The linear dynamic model is defined by the
matrices

A =

 0 0 0
0 0 ω
0 −ω 0

 , B = I =

 1 0 0
0 1 0
0 0 1

 . (6)

The output function g : λ → i is the inverse of the
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nonlinear flux map f(·) = [fr(·), fd(·), fq(·)]T

f : i→ λ. (7)

The map f(·) is typically obtained with finite element
analysis (FEA) or through experimental measurement
campaigns. This approach describes the map f(·) by
N tuples of current ij and flux linkage λj with j ∈
{0, 1, . . . , N}. The sets of points containing all measure-
ments IP = {i1, . . . , iN} ⊂ I and ΛP = {λ1, . . . , λN} ⊂ Λ
are assumed to be in a general position to define a lookup
table (LUT) that approximates the map f(·). The data is
typically ordered in the first variable to simplify searching
a LUT. Identifying the inverse g(·) tends to be numerically
and computationally challenging to obtain. In applications
where the current is estimated using an observer instead of
directly measured, g(·) is required to convert an estimated
flux to an estimated current [12], [17]. In advanced con-
trollers that use state space equations, the output equation
is typically g(·) (5b).

This research proposes to express the WRSM magnetic
model as a PWA map. PWA maps divide a nonlinear map
into M domains (this process is described in Section IV)
over which the function is linearized [25]. Hence we express
the PWA current to flux map

λ = f(i) ≈ fPWA(i) =


L1i+ ψ1, i ∈ I1,

L2i+ ψ2, i ∈ I2,

· · ·
LM i+ ψM , i ∈ IM ,

(8)

where λ = Lji + ψj is the affine equation that maps
currents i ∈ Ij onto fluxes λ ∈ Λj and Λj is the image
of the domain Ij . The affine map is defined by the the
inductance matrix Lj and a flux offset ψj . Visualizations
of fPWA(i) are shown in Fig. 3. The process to calculate
Lj and ψj is described in Section III.

The inverse of f(·) is

i = g(λ) ≈ gPWA(λ) =


L−1

1 (λ− ψ1), λ ∈ Λ1,

L−1
2 (λ− ψ2), λ ∈ Λ2,

· · ·
L−1

M (λ− ψM ), λ ∈ ΛM ,

(9)

such that i = g ◦ f(i).
Each subset is defined to be be a simplex, which is the

simplest possible polytope in any D-dimensional space and
a tetrahetron in the three dimensions of the given problem.
A D-dimensional simplex can be defined as the convex hull
of its D+1 vertices (called the V-notation; alternatively, a
simplex can be defined by its by its faces defined as affine
inequalities called the H-notation [22])

Ij = H({ij0 , ij1 , . . . , ijD
}), (10)

where ij0 , . . . , ijD
∈ IP . Each current simplex Ij forms a

domain of an affine map that maps into the flux simplex

Λj = H({λj0 , λj1 , . . . , λjD
}), (11)

where λj0 , . . . , λjD
∈ ΛP . The general position of the defin-

ing set of measurement points implies that the vertices of

Fig. 6: Affine map visualization showing current simplex
Īj in dimension shifted by ij0 (left), and Λ̄j in dimension
shifted by λj0 flux simplex (right).

each simplex are linearly independent and full dimension
(not degenerate).

III. Identification of PWA Magnetic Maps
Each tetrahedron Ij is defined by four vertices shown in

(10). Let one vertex ij0 be the support vector such that we
can move the origin ī = i − ij0 . In the shifted dimension,
the simplex is defined by

Īj = H(0, īj1 , . . . , ījD
}), (12)

where ījk
= ijk

− ij0 (k = {1, . . . , D}) span the simplex.
Furthermore, we shift the flux space by the corresponding
flux vector λ̄ = λ− λj0 that results in the simplex

Λ̄j = H(0, λ̄j1 , . . . , λ̄jD
}), (13)

where λ̄jk
= λjk

− λj0 (k = {1, . . . , D}) span the simplex.
The simplices (D = 3) and the shift of origin are illustrated
in Fig 6.

The nonzero vertices can be interpreted as a basis and
since an affine map is an isomorphism, the relative position
of a vector in the current and flux simplex is the same

ī = a1īj1 + · · ·+ aD ījD
. (14)

The a coefficients can be obtained similar to how space
vector modularion (SVM) computes relative on-times [25].
We project ī onto the basis of Īj

Fig. 7: Voronoi diagram (left) of a six-point irregular cur-
rent grid in idq space (sliced at ir = 0 pu); corresponding
five-simplex Delauynay Triangulation (right)
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pjk
= proj̄ijk

ī = ījk
· ī

‖̄ijk
‖
, (15)

and obtain the relative length of the vector by dividing
the magnitude of the projections with the magnitude of
the basis vectors

ajk
= ‖pjk

‖
‖̄ijk
‖
. (16)

To find the flux vector λ̄, we multiply ak with the basis
vectors of Λ̄j

λ̄ = a1λ̄j1 + · · ·+ aDλ̄jD
. (17)

Then, the motor flux results from shifting the origin.
The steps (14) to (17) can be simplified using vector

notation. Let the bases of Īj and Λ̄j be the matrices

MĪj
=
[̄
ij1 , . . . , ījD

]
, (18a)

MΛ̄j
=
[
λ̄j1 , . . . , λ̄jD

]
, (18b)

and a = [a1, . . . , aD]T . Then, we obtain ī = MĪj
a and

λ̄ = MΛ̄j
a from (14) and (17). Since the simplices are not

degenerate, the bases are nonsingular and we obtain the
linear relationship

M−1
Λ̄j
λ̄ = M−1

Īj
ī, (19)

that can be used to map current to flux and vice versa.
We can now substitute the original coordinates

M−1
Λ̄j

(λ− λj0) = M−1
Īj

(i− ij0), (20)

that result in the affine map

λ = Lji+ ψj , (21)

where Lj = MΛ̄j
M−1
Īj

and ψj = λj0 − Ljij0 .

IV. Identification of PWA Magnetic Domains:
Delaunay Triangulation

Constructing the PWA functions implies splitting the
domain I and image Λ into M subdomains Ij and subim-
ages Λj . We require that these subdomains are connected
and that the resulting maps are non-conflicting. In other
words, a point i ∈ I can be in one or more subdomains
if and only if they map to the same point λ ∈ Λ. Hence,
the domain can be split into simplices that do not overlap
except for the border. Any point on the border i ∈ ∂Ij is
expected to be part of two or more subdomains to ensure
continuity. They all map onto the same λ ∈ ∂Λj that
is also part of two or more subdomains. In contrast, all
points in the interior of the subdomains are part of only
one subdomain.

In practice, the map is defined by a set of measured
[6]–[8], [11], [13]–[16], simulated [8], [11], [16], or estimated
[12], [17] current points IP and flux points ΛP . The convex
hull of IP and ΛP is a reasonable domain I and image λ,
respectively.

Subdomains are obtained by identifying unique and con-
nected simplices using the Delaunay triangulation DT(IP )
[26]. To calculate the Delaunay triangulation for IP , first

a Voronoi diagram must be constructed using IP . The
Voronoi diagram of IP splits the I space into |IP | Voronoi
cells; all points in a Voronoi cell are closer to a single
point in IP than any other. To obtain the Delaunay tri-
angulation, one may find the dual of the Voronoi diagram.
A simple 2D example using dq currents is shown in Fig.
7. The Delaunay triangulation DT(IP ) of the Euclidian
space I guarantees that no point i ∈ I is inside two
simplices in DT(IP ). In general, DT(IP ) is unique and
there exists no set of D+2 points wherein one of the points
lies strictly inside the minimally enclosing hypersphere of
the point set. Each simplex or subdomain will have an
affine equation, where the coefficients are calculated using
(12)-(21) in Section III. The combination of subdomains
and coefficients yields the PWA MM which has the form
(8).

Fig. 8: DSP Evaluation: Computation time (µs) distribu-
tion vs Number of Points used in PWA (top), Memory
(KiB) vs Number of Points used in PWA (bottom)

V. Static Evaluation with FEA Data
The data points IP and ΛP used to describe the flux-

current map can be a regularly spaced grid, random data
points, or data points selected to minimize the mem-
ory requirements considering the accuracy of the PWA
function. Let IP,NR×ND×NQ

denote a regularly spaced
grid with NR, ND, and NQ individual grid line current
values in the r-axis, d-axis, and q-axis, respectively. The
corresponding flux points are denoted as ΛP,NR×ND×NQ

=
f ◦ IP,NR×ND×NQ

. A regularly gridded current space re-
sults in an irregular flux grid in general as it is shown in
Fig. 4.

Throughout this section, the accuracy of the MM
fPWA(·) (abbreviated fP) with varying characteristics is
benchmarked against a high fidelity MM spline inter-
polated fS,44×31×42 (fs(·) denoting spline interpolation),
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Fig. 9: Flux error distribution between high resolution
MM: fS,44×31×42 and fP,44×31×42 at (left) iq = 0 pu,
(middle) iq = 0.4 pu, (right) iq = 0.8 pu; (top) full
current domain, (middle) derated region, (bottom) MTPA
trajectory

characterized by IS,44×31×42 and ΛS,44×31×42. The dat-
apoints I and Λ were obtained using FEA-analysis; the
PWA interpolation is performed by creating subdomains
using the process described in Section IV, then the coef-
ficients of the affine function fP(i) for each subdomain is
computed using (12)-(21) in Section III.

The average 2-Norm flux error between the fS,44×31×42
model and an arbitrary fP,NR×ND×NQ

model is computed
by taking a large number of randomly selected points in
the current space I, computing the 2-Norm flux error of
each point, then taking the average all errors.

The results for the error between fS,44×31×42 and
fP,44×31×42 is shown in Fig 9. It is observed that error
is the highest (≈ 0.4%) in the most nonlinear regions of
f , which occur along two diagonal lines across the ir and
id axis due to magnetic cross coupling (see Fig. 2).

The error for varying sized fP,NR×ND×NQ
are shown

in Fig. 10, where all combinations between fP,2×2×2 and
fP,7×7×7 are shown. As the number of grid lines in any axis
increases, the average 2-Norm flux error generally stays the
same or decreases. For the specific cases where NR = 2 and
ND = 2, the average 2-Norm flux error saturates even as
the number of grid lines in other axis are increased.

There may arise cases where we wish to decrease the
number of data points I used in the mesh; we wish to
select only the “important” points that decrease error the
most. An optimized irregular grid (OIG) is created for this
purpose to specifically minimize the maximum absolute
error for a given number of datapoints.

Fig. 10: Average 2-Norm flux error between variously
sized fP,N×N×N (PWA interpolated) MMs and several
optimized irregular gridded (PWA interpolated) MMs vs
high fidelity fS,44×31×42 (spline interpolated) MM

An algorithm to create the OIG is shown in Fig. 11. The
PWA MM obtained from using this optimized irregular
grid, fP,OIG(N) (where N is the total number of points used
in the grid), reduces the average 2-Norm flux error by 1−
15% and maximum 2-Norm flux error by 9− 20%. Points
and pareto frontiers for error are shown in Fig. 10.

Other irregular grids of datapoints can be used to create
a MM that minimizes error in specific regions of operation,
instead of overall maximum error of the OIG described
above. These regions could include maximum torque per
ampere (MTPA) [27]), field weakening (FW), maximum
torque per volt (MTPV), or other trajectories of the
machine. Step three in the algorithm shown in Fig. 11 can
be changed to only include points within a certain desired
region or regions (instead of any random operating point),
which will create an error-optimized grid for the desired
region or regions. The error distribution for an OIG along
the MTPA trajectory is shown in Fig. 9, and the total
error is shown in Fig. 10. In derated operation, currents
are limited to the unsaturated flux region (where flux error
and copper losses are low), shown in Fig. 9. The average
and max flux error of a derated drive will subsequently
decrease, shown in Fig. 10 as OIG-derated (OIGD).
fPWA(·) of various sizes were tested on a Texas Instru-

ments TMS320F28379D real-time microcontroller. The
amount of memory used (KiB) and computation time
(µs) increase nonlinearly with the number of data points
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Fig. 11: Algorithm describing how to obtain a MM
fP,OIG(N) using an optimized irregular (not regularly grid-
ded) grid of N points points, in the rdq current domain

used, but are in suitable range for machine controllers
(< 40µs) (< 10 KiB) even at relatively high fidelity (using
40 datapoints), shown in Fig. 8. Warm starting and early
termination are not used in computation timing, these
methods may be be able to decrease online computation
times by up to two orders of magnitude [28].

The number of points to use in the PWA MM depends
on the machine application and controller type used.
There are trade-offs between error, computation time,
and memory. For example, if using the Texas Instruments
TMS320F28379D, for an application where extremely low
error is required one may choose an optimized irregular

PWA MM with 150 points (fP,OIG(150)), so that the aver-
age error is < 3% (see Fig. 10). The computation will be
slow (> 90µs) and the memory used on the controller large
(> 30 KiB) (see Fig. 8). Alternatively, for an application
where fast computation or small memory usage is required,
the number of points used will be lower, increasing the
error.

Fig. 12: WRSM bench setup: (clockwise from left) Refer-
ence Actuation and Sampling, WRSM, Dyno: Induction
Machine, DC Supply, Chopper

VI. Testbench Validation
A simplified powertrain setup is shown in Fig. 5. An

inverter converts the DC bus voltage udc to three phase AC
voltage uabc and current iabc to excite the stator windings.
A DC/DC converter steps udc to a desired rotor field
voltage ur and rotor field current ir to excite the rotor
winding. A WRSM was tested on a bench setup using
a simple virtual-flux PI controller, TABLE II shows the
parameters of the machine, and Fig. 1 shows a cross section
of the machine. Current in the rotor axis is referred to the
stator throughout this section.

A. Steady State Behavior
The accuracy of the proposed state space model (1)

and the PWA MM (8) was evaluated by comparing ex-

TABLE II: WRSM Motor Drive Parameters

Parameter Value

Turns ratio Nf /Ns 39
Pole pairs p 2

Stator resistance Rs 11.732 mΩ
Rotor resistance (stator referred) Rr 5.461 mΩ

Shaft inertia 22.76E-3 kg m2

Switching frequency 10 kHz
Sampling frequency 20 kHz

Nameplate r-axis inductance Lr 1.956 mH
Nameplate d-axis inductance Ld 2.420 mH
Nameplate q-axis inductance Lq 0.789 mH

DC-link voltage udc 325 V
Rated power 65 kW
Rated torque 220 Nm
Base speed 3000 1/min
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Fig. 13: PWA MM built using 60 points (fP,4×5×3) (Top)
mean THD across three phase currents, (Middle) error
between experimental and expected voltage vs speed,
(Bottom) error between experimental and expected torque
vs speed

perimental and expected voltages and torques at steady
state speeds. Voltage can be calculated by solving (1) at
steady state speeds ( ˙λrdq = 0), where terminal voltages
become constant. Substituting (8) into (2), the torque
of the machine becomes a function of only current that
includes the MM,

T = pi′JfPWA(i). (22)

Thus by measuring the experimental torque and evaluat-
ing (22), the accuracy of fPWA can be attained.

The results for static evaluation of a medium-sized PWA
MM built using 60 points (fP,4×5×3) are shown in Fig. 13
for speeds ranging from .167 pu to .835 pu. Voltage and
torque error are kept below 5%, in accordance to what is
expected from Fig. 10.

The state space model and PWA MM are shown to be
robust against space and time harmonics in Fig. 13. The
mean THD of the three-phase currents (THDph) captures
any deviation from the pure sinusoidal currents that occur
at constant speed and constant load, which are caused
by inverter switching non-linearities, slotting effects, and
other non-ideal behaviors. Over a wide range of speeds the
mean THD is between 2 − 10%, yet voltage and torque
error remains below 5% in accordance to Fig. 10. At
higher speeds the torque and voltage error tend to decrease
due to nonlinear sensor characteristics and mechanical
resonances.

B. Transient Behavior
Two time-domain experiments were conducted to verify

the accuracy of the proposed PWA model in a dynamic
setting. The results are shown in Fig. 14. and Fig. 15.

In the first experiment the WRSM is spun at a fixed
speed of 1000 1/min using a coupled industrial drive.

The WRSM exerts .5 - 44 Nm variable torque steps that
follow torque references over a 120s period. The experi-
ment shows how the accuracy of the proposed PWA MM
behaves under abrupt steps, where the three-dimensional
current vector rapidly travels through many PWA subdo-
mains.

The second experiment is an automotive drive cycle. In
this experiment the WRSM is acting as the motor for a
vehicle, while the coupled industrial drive simulates the
drivetrain and inertia of the vehicle. In this experiment
the drive follows a 120s variable speed reference simulating
the vehicle speeding up (≈ +40 Nm), slowing down (≈
−40 Nm), twice, with the vehicle coasting at around 1200
1/min in the first cycle. This experiment explores the error
from the PWA MM functions over a wide range of speeds
and torques.

In both experiments, the experimental results were
evaluated offline using PWA MM of three resolu-
tions: high fidelity spline (fS,44×31×42), 90-point regular
grid (fP,5×6×3), and 90-point optimized irregular grid
(fP,OIG(90)). These 90-point MMs were chosen as they put
the controller to the limit in time and memory (see Fig.
8). The 2-Norm average error and error over time between
the 90-point grid MMs and spline MM was evaluated. The
MMs perform up to or better than the expected results
found in simulation (Fig. 10), with flux error staying below
2% maximum and 1% average.

The torque was approximated offline using the measured
current i, flux λ from the 90-point PWA MM fP,OIG(90),
and (22). This was compared to reference torque T ∗ in the
first experiment and torque using flux λ from fS,44×31×42
in the second experiment. In both cases the error does well,
staying below 2.5% maximum and 1% average.

VII. Conclusion
A novel approach to modelling a machine’s magnetic

model for a controller using Piecewise Affine functions has
been described and formalized. Static evaluation against
other magnetic models shows high performance while
maintaining desirable qualities for advanced linear state
space control. Error and memory constraints were evalu-
ated on a DSP demonstrating that an optimized irregular
PWA function exceeds the accuracy of regularly gridded
Look-up Tables (LUT) by 1% to 15% (average error) and
9% to 20% (peak error). A 40-point PWA MM has < 40µs
computation time and uses < 10 KiB of space.

Evaluation of the PWA MM was tested on WRSM
bench setup using a virtual flux controller, showing profi-
cient results: < 2% maximum and average flux error over a
wide range of speeds, torques, and current combinations.
The new state space model was experimentally verified
to < 5% error even in the presence of significant phase
current harmonics.
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Fig. 14: 120s experimental transient PWA results: Torque steps (.5 - 44 Nm) at reference 1000 1/min speed, Left
to right: A) Experimental Result: reference and measured torque T , reference and measured speed; B) measured
currents i (rdq); C) Estimated parameters: PWA-approximated flux λ (rdq) in three resolutions (high fidelity spline,
90-point regular grid, 90-point irregular optimized grid); D) Comparison: (top) calculated torque T using (22) and
reference torque T ∗, (bottom) torque and flux error (flux error between PWA-approximated fluxes λ and high fidelity
spline PWA flux λ)

Fig. 15: 120s experimental transient PWA results: Automotive drive cycle (0 - 1910 1/min speed) exhibiting positive
and negative torques, Left to right: A) Experimental Result: reference and measured speed, measured torque T ; B)
measured currents i (rdq); C) Estimated parameters: PWA-approximated flux λ (rdq) in three resolutions (high
fidelity spline, 90-point regular grid, 90-point irregular optimized grid); D) Comparison: (top) calculated torques
using (22), (bottom) torque and flux error (flux error between PWA-approximated fluxes λ and high fidelity spline
PWA flux λ, PWA approximated torque T and calculated torque T using high fidelity spline PWA as reference)
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