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Abstract—Power-efficient torque control of the
Wound Rotor Synchronous Machine (WRSM) requires
a minimization of electrical losses, namely copper and
iron losses. In this paper, the Minimum Power Loss per
Torque (MPLPT) optimization problem is presented
and solved using a convex pareto frontier of simu-
lated or measured data points. Magnetic saturation
and cross-saturation effects are captured using sampled
points throughout full-machine operation. A filtered
solution set is mapped to current space using piecewise
affine functions, which approximate the current using a
piecewise linear function for a given torque. This set of
piecewise linear functions enables a machine controller
to implement MPLPT online or as an offline lookup
table. Results are presented for a 65 kW, FEA-sampled
WRSM.

Index Terms—Loss Minimization, Motor Parame-
ters, Piecewise Linear Techniques, Torque Control,
Wound Rotor Synchronous Machine

I. Introduction

This research focuses on the wound rotor synchronous
machine (WRSM) and minimizing electrical losses given
a reference torque while taking saturation and cross-
saturation into account. WRSMs are a class of electric
machines used in power generation, traction (e.g., elec-
tric vehicles, EVs), and other industrial and residential
applications. They have several advantages over PMSMs
including: higher level of controllability due to their ability
to modulate rotor flux, a large constant-power speed
range, and increased cost-effectiveness given that no ex-
pensive, rare-earth magnets are required in production.
Additionally, the rotor flux can be controlled to correct the
power factor of the machine, which can lower the volt-amp
(VA) rating on the system inverter [1]. This modulation
can also be used to increase the stator current required for
low speed, high torque operation, a feature advantageous
for reducing cost in electric vehicles (EVs) [2]. For decades
WRSMs have been used in power generation (10-300MW)
[2], [3], while more recently it has proved its effectiveness
in the EV space. The Renault Zoe vehicle uses WRSMs
since 2012 [4]. However, WRSMs have certain drawbacks
when compared to PMSMs including: higher copper losses
due to the added rotor windings, and increase mechanical
complexity. Finally, WRSM have a strong (nonlinear)
coupling between the direct (d) and rotor (r) dimension.

Directly controlling the torque of any machine is gen-
erally difficult, as controllers are able to control and
regulate some combination of voltage, current, or flux. A
typical approach is to define a reference torque, which is
then directly mapped to a reference set of currents. This
mapping is generally not unique, and there is no optimal
solution as torque is a non-convex function of current [5].
This problem is typically referred to as Maximum Torque
per Ampere (MTPA), but is rephrased in this research
as Minimum Power Loss per Torque (MPLPT) to include
iron losses. The MPLPT problem becomes more complex
with the addition of the strong saturation in magnetic flux
of the WRSM, which must operate in the linear and non-
linear magnetic regimes in general to prevent high flux
error during saturation and cross-saturation [6]–[14].

Existing online methods used to include a nonlinear
magnetic flux into an MTPA-type optimization that can
run on a microcontroller include calculating the instanta-
neous inductance of the machine using Extended Kalman
Filters [15] and iteratively using Ferrari’s method to reach
a sufficiently accurate solution [16]. These methods are
computationally expensive on a controller. Offline meth-
ods include adding a cross-coupling torque term and addi-
tional variables that decrease the inductance in saturation
to approximate saturation effects. This method produces a
ten-term cubic torque equation that is difficult to optimize
[17] but can be mapped sufficiently accurate large LUT.

This research proposes using pareto-optimal simulated
or experimental values to the MPLPT as candidate points
for a MPLPT current path. The solution set is reduced
by considering only convex pareto-optimal points, and
the points are linked using a Piecewise Affine (PWA)
function. This produces a set of linear functions that
are computationally cheap to run on a controller for any
reference torque of the machine.

This paper is organized as follows. In Section II the
WRSM dynamic model is presented. In Section III the
torque and power loss characteristics for the WRSM are
explained, then Section IV describes the MPLPT opti-
mization problem and solution sets. Section V describes
the PWA map linking the solution sets to a continuous
MPLPT path in three-dimensional current space. Section
VI shows results for a simulated WRSM using FEA-
simulated data, and finally Section VII concludes the



Fig. 1: WRSM motor drive (gray) with an example motor
controller (white) using MPLPT function (blue) to gener-
ate reference current from reference torque

paper.

II. WRSM Motor Model

The three-phase WRSM can be described dynamically
as a state-space model [18]. For formal simplicity and the
common challenges of displaying spaces higher than three,
this research focuses on the most common WRSM used in
motor drives: a neutral-point isolated machine (without
zero-axis flux and current) and without damper windings.
However, it is noted that it is trivial to generalize this
research to higher dimensions. Throughout this research,
we use the power-invariant Clarke transformation and the
magnetic axis of the field winding is used as reference angle
of the Park transformation.

The voltage equations of this WRSM are

λ̇r = vr −Rrir = v̄r, (1a)
λ̇d = ωλq + vd −Rsid = ωλq + v̄d, (1b)
λ̇q = −ωλd + vq −Rsiq = −ωλd + v̄q, (1c)

where ˙ is the d
dt operator; λr ∈ R is the rotor, i.e.

field, flux linkage; λd, λq ∈ R are the d-axis and q-axis
stator flux linkages respectively; i ∈ R and v ∈ R are
the currents and voltages of the appropriate dimension;
Rr, Rs ∈ R+ are the rotor and stator resistances, and
ω ∈ R is the synchronous speed, i.e. the electrical velocity
of the machine. Furthermore, we introduce the voltages v̄
that are the terminal voltages compensated by the winding
resistive voltage drop. This concept can be generalized
to include compensation for inverter nonlinear behavior
such as switch on-voltage drops and dead-times [19]. The
machine currents map onto machine flux with a nonlinear
map φ : R3 → R3

λr = φr(ir, id, iq), (2a)
λd = φd(ir, id, iq), (2b)
λq = φq(ir, id, iq), (2c)

that captures magnetic coupling between axis, magnetic
saturation, and cross-saturation [18]. These equations can
be written as a standard state-space systems in discrete
time with sampling period Ts

λ+ = f(λ, v̄), (3a)
i = g(λ), (3b)

where the state is the flux λ = [λr, λd, λq]T ∈ Λ, the
input is the compensated voltage v̄ = [v̄r, v̄d, v̄q]T ∈ V,
and the measurement is the current i = [ir, id, iq]T ∈ I.
The state-space variables are finite in all dimensions that
are approximated with box constraints

I = {i ∈ R3|Imin ≤ i ≤ Imax}, (4a)
V = {v̄ ∈ R3|V̄min ≤ v̄ ≤ V̄max}. (4b)

The flux constraint is defined as a derivative of the cur-
rent constraint Λ = φ ◦ I. Furthermore, the flux (and
current) constraints are chosen such that the rotor flux
(and current) is positive λr ≥ 0 (and ir ≥ 0) without loss
of generality.

The dynamic equation is expressed in vector notation
as [20]

f(λ, v) = (I − ωTsJ)λ+ Tsv̄, (5)

where J is the 90° rotation matrix in the dq plane

J =

 0 0 0
0 0 −1
0 1 0

 . (6)

The output function g : R3 → R3 is the inverse of the
nonlinear flux map φ(·) = [φr(·), φd(·), φq(·)]T . Typically,
φ(·) is bijective and the output function is defined as

g(λ) = φ−1(λ) (7)

The map φ(·) is typically obtained with with finite
element analysis (FEA) or obtained with experimental
measurement campaigns. The equation for relating current
to flux linkage in the WRSM without saturation has the
form

λ = Li+ ψ, (8)

where L ∈ R+
3×3 is the inductance matrix and ψ ∈ R3×1

is the flux-offset vector

L =

 Lrr Lrd Lrq

Ldr Ldd Ldq

Lqr Lqd Lqq

 , ψ =

 ψr

ψd

ψq

 . (9)

The diagonal terms of L are the self-inductances of the
rotor (Lrr) and stator (Ldd, Lqq), while the non-diagonal
terms are the mutual inductances between the three axis.
Typically Lrq, Ldq, Lqr, and Lqd are negligible. In this
formulation L is constant and the fluxes are linearized as
shown in Figure 2.



Fig. 2: WRSM flux vs current: experimental (blue), exam-
ple linearization through origin (orange).

III. Motor Torque and Power Loss Models
In many machine applications, the input to the control

system is a desired or reference torque T ∗ [Nm], while the
controller is able to directly actuate winding rotor and
stator voltages v̄ and thus currents i. Thus it is desirable
to create a direct mapping between torque and current in
a way that minimizes electrical losses in the machine. For
the WRSM an example control diagram is shown in Figure
1.

The machine torque per pole pair is

τp(i, λ) = τ(i, λ)/p = iT Jλ, (10)

where τ : R6 → R is the machine torque and p is the
number of pole pairs.

Expanding λ using equation 8 yields the quadratic
equation

τp(i) ≈ iT JLi+ iT Jψ, (11)

a linearized approximation of τp(i) using φ(·). τp(i) = T ∗

can be shown to be a saddle point of τp(i), as the Hessian
matrix H(τp(i) = T ∗) has positive and negative eigenval-
ues.

The proposed MPLPT concept can be combined with
any power loss models. The simplest has quadratric terms
for winding losses πlw : R6 → R and core losses πlc : R6 →
R of an electric motor [21]. The combined power loss is
πl : R6 → R

πl(i, λ) = πlw(i, λ) + πlc(i, λ). (12)

Fig. 3: Pl = πl(i, λ) for Pl = {0.2 kW, 0.3 kW, 0.4 kW,
0.5 kW, 0.6 kW, 0.7 kW, 0.8 kW, 0.9 kW, 1.0 kW}

Fig. 4: Tp = τp(i, λ) for Tp = {−42 Nm/p, −20.4 Nm/p,
1.1 Nm/p, 22.7 Nm/p, 44.3 Nm/p, 65.9 Nm/p,
87.4 Nm/p, 109 Nm/p}

These losses are approximated by φ(·) and are defined over
the sets (20) and (19)

πlw(i, λ) ≈ iT Ri, (13a)
πlc(i, λ) ≈ ω2λT Gλ, (13b)

where the matrix R defines the winding resistances that
approximates DC and (skin effect and proximity effect)
AC winding losses [22], [23]. The matrix G defines the
core conductance that approximates (eddy current and
hysteresis effect) core losses and can be interpreted as a
local approximation of the Steinmetz equation [21].

Iso-power-loss and iso-torque surfaces are shown in Fig-
ures 3 and 4 respectively.



IV. Minimum Power Loss per Torque
A. Problem Statement

The MPLPT targets minimizing losses (equations 13a
and 13b) for a given reference torque T ∗. The output is a
reference current i∗ and reference flux λ∗. The most gen-
eral form of the problem is stated as follows: for a torque
reference T ∗, the MPLPT current and flux references are

[i∗, λ∗] = arg min
i∈I,λ∈Λ,v̄∈V

πl(i, λ), (14a)

subj. to f(λ, v̄) = λ, (14b)
g(λ) = i, (14c)
τp(i, λ) = T ∗

p . (14d)

The objective function 14a being minimized is electrical
losses from equation 12. Constraint 14b is the flux λ
and voltage v̄ relationship from equation 1 and requires
steady state operating points (λ̇ = 0). Constraint 14c links
current to flux using φ(·), and 14d constrains the quadratic
torque function to the specific reference torque of interest
T ∗

p .
The solution set for all T ∗

p ∈ T , where T is the set of
allowable machine torques, will be sets of currents I, fluxes
Λ, torques T , and power losses P where

I = {i∗ ∈ I, s.t. Eqn. 14} ∈ R3 (15a)
Λ = {λ∗ ∈ Λ, s.t. Eqn. 14} ∈ R3 (15b)
T = {T ∗ ∈ T , s.t. Eqn. 14} ∈ R (15c)
P = {P ∗

l ∈ P, s.t. Eqn. 14} ∈ R. (15d)

which we can combine as

Γ = {T ,P, I,Λ} ∈ R8. (16)

This optimization problem NP-Hard to solve due to the
functions πl(i, λ), τp(i, λ), and state space model equations
f(λ, v) and g(λ), thus there is no analytical solution for
Γ. An example solution for one specific Tp ∈ T is shown
in Figure 5 showing torque and powerloss surfaces.

B. Quantitative Solution to MPLPT
This research focuses on solving the MPLPT problem

assuming low speed operation. In these conditions, the
copper loss is dominant, i.e. πlw(·) � πlc(·), and the
machine operates below base speed ω < ωb, i.e. no field
weakening.

Taking a large sample of random experimental or sim-
ulated datapoints can yield an approximate solution to
equation 14. FEA-simulated data points will have a cur-
rent i and flux λ, while experimental data points will
only have a known current i and an approximated flux λ
using flux-linkage map approximations via φ. These points
can be directly mapped to a torque per pole pair Tp and
powerloss Pl using τp(i, λ) and pl(i, λ).

The set of all experimental datapoints is denoted

Γ = {T ,P, I,Λ} ∈ R8 (17)

Fig. 5: Solution to MPLPT showing τp(i) = T ∗ (blue),
minimized πl(i∗, λ∗) (green), and solution point (red).

where a single point Γj has four components. The value of
each component for each point can be denoted Γj,k where
j is the component and k is the index of the value. For
example Γ1,1 is the torque of the first data point. The set
of just one component, say torque, for all points can be
denoted Γ1,k, while the collection of all components for
one value, say the first value, can be denoted Γj,1.

The datapoints can be plotted according to their power
loss, Γ2,k, and inverse torque, Γ−1

1,k, against Γ to see which
points are the most optimal.

From the set of all datapoints Γ, there will be pareto-
optimal, or efficient, values. In this case pareto-optimal
value is defined as a value in Γ that cannot further decrease
Γ−1

1,k without increasing Γ2,k or vice-versa [24].
The set of all pareto-optimal points is called a pareto

frontier. The pareto frontier for a WRSM can be denoted
Γp. The points in the pareto frontier will all have unique
torques.

The pareto frontier points Γp produced by this method
can be considered candidate points for a general MPLPT
function that will exist in three-dimensional current space
I.

It can be noted that a line connecting all pareto-optimal
points is not necessarily convex. A new set Γc is defined
as the largest subset of pareto-optimal points that creates
a convex, piecewise linear function when line segments are
added between the points.

The point Γj,x that corresponds to minimum torque
Tp,min ∈ Tp will always be in Γc because the minimum
torque point occurs at zero losses, and no point can have
negative losses. Furthermore the point Γj,x corresponding
to maximum torque Tp,max ∈ Tp will also always be in this
set as no point can have higher torque, regardless of losses.
By definition Γ ⊆ Γp ⊆ Γc.

Because points in Γ are MPLPT optimal and Γc are not,
the losses for a point in Γc will always be greater than
or equal to the losses in Γ with the same torque. So Γc



Fig. 6: Diagram showing relationship between the sets
Γ,Γp,Γc, and Γ

Fig. 7: Example points of Γ,Γp,Γc, and Γ shown on power
loss Γ2,k, and inverse torque Γ−1

1,k axis

may contain points in Γ, or Γc ∩ Γ 6= ∅. The relationships
between the sets Γ,Γp,Γc, and Γ is shown in Figure 6, and
example points of the sets are shown in Figure 7.

Connecting convex pareto-optimal points Γc with line
segments produces values that are more optimal than us-
ing any interior pareto-optimal points. Connecting pareto-
optimal points using straight line segments is an approxi-
mation that is only valid for densely-sampled points. Ad-
jacent points in Γc must be within a minimum ε euclidean
distance of each other to be considered close enough to
approximate a line between them. If two points are not
close enough to meet this requirement, more points must
be simulated or measured. Specifying what this distance
is is outside the scope of this paper.

Generating a convex pareto frontier can be obtained
using a modified divide and conquer algorithm for a set
of solutions [25]. Linking the convex pareto frontier line
segments from two-dimensional (Γ−1

1,k,Γ2,k ∈ R2) space
to three-dimensional (Γ3,k ∈ R3) current space can be

Fig. 8: (Left) Using four experimental data points (Γj,1,
Γj,2, Γj,3, Γj,4) to partition torque-powerloss space into
three two-dimensional simplices (T1, T2, T3) and the corre-
sponding three, one-dimensional simplices in current space
(I1, I2, I3)

modelled using a piecewise affine map.

V. Piecewise Affine Map for MPLPT
This research proposes to express the approximate

MPLPT solution path as piecewise-affine (PWA) function.
PWA maps divide a nonlinear map into M domains
over which the function is linearized [26]. The torque
domain Γ1,k is partitioned into torque regions Tj , but can
equivalently be partitioned into powerloss regions. Moving
forward points in this space are interchangeably described
as torques Tp,k or Γ1,k values equivalently. Similarly the
current domain Γ3,k will be partitioned into current re-
gions Ij , and currents can be described by ik or Γ3,k.

Hence we express the PWA torque to current map, or
MPLPT function, h(Tp) as

i = h(Tp) ≈ hP W A(Tp) =


m1Tp + i1, Tp ∈ T1,

m2Tp + i2, Tp ∈ T2,

· · ·
mMTp + iM , Tp ∈ TM ,

(18)

where i = mjTp + ij is the affine equation that maps
torques-powerloss points T ∈ Tj onto current points
i ∈ Ij and Ij is the image of the domain Tj . The torque
simplices must cover the full range of machine torques, or
{T1 ∪ T2, . . . TM = T . The affine map is defined by the
three-dimensional current slope and a current offset. This
is seen on the left plot of Figure 8. The points used to
create h(T ) are the set Γc defined in Section IV and the
process of using the points to create h(T ) is described next.

PWA maps divide the original domain into M sets. Each
subset is defined to be a simplex, which is the simplest
possible polytope in any D-dimensional space and a line
segment in the single dimension of the given problem. A
D-dimensional simplex can be defined as the convex hull
of its D+1 vertices (called the V-notation; alternatively, a
simplex can be defined by its by its faces defined as affine
inequalities called the H-notation [27])

Tj = H({Tj0 , Tj1}), (19)



where Tj0 , Tj1 ∈ T . Each torque simplex Tj forms a
domain of an affine map that maps into the current
simplex

Ij = H({ij0 , ij1}), (20)

where ij0 , ij1 ∈ I. The general position of the defining set
of measurement points (convex) implies that the vertices of
each simplex are linearly independent and full dimension
(not degenerate). Example simplices that are linked in
both spaces are shown in figure 8.

Each line segment Tj is defined by two vertices. Let one
vertex Tj0 be the support vector such that we can move the
origin T̄ = T − Tj0 . In the shifted dimension, the simplex
is defined by

T̄j = H({0, T̄j1}), (21)

where T̄j1 = Tj1 − Tj0 where T̄j1 spans the simplex.
Furthermore, we shift the current space in the same way,
ī = i− ij0 that results in the simplex

Īj = H({0, īj1}), (22)

where īj1 = ij1 − ij0 and ¯ij1 spans the simplex. The D = 1
simplices and the shift of origin are illustrated in Figure
9.

The nonzero vertices can be interpreted as a basis and
since an affine map is an isomorphism, the relative position
of a vector in the current and flux simplex is the same

T̄ = aT̄j1 . (23)

The a coefficient can be obtained similar to how space
vector modulation (SVM) computes relative on-times [26].

We project T̄ onto the basis of T̄j

pj = projT̄j1
T̄ = T̄j1 · T̄

‖T̄j1‖
, (24)

and obtain the relative length of the vector by dividing
the magnitude of the projection with the magnitude of
the basis vector

a = ‖pj‖
‖T̄j1‖

. (25)

To find the current vector ī, we multiply a with the basis
vector of īj , ¯ij1

ī = aīj1 . (26)

Setting the a coefficients in equations 23 and 26 equal

T̄

T̄j1

= ī

īj1

(27a)

and solving for i yields the resulting linear map

i = mjT + ij (27b)

where mj = i−ij0
Tj1 −Tj0

and ij = ij0 −mjTj0 A visualization
of this is shown in Figure 9.

Fig. 9: Torque-powerloss shifted simplex T j and projected
vector T j1 mapped to shifted current simplex Īj and
projected vector ī by PWA function h(T )

Fig. 10: WRSM cross section showing a saturated flux
density B distribution in Tesla at iq = 1[pu] (left), and
id = 1[pu] (right)

VI. Results

A typical path of interest in machine control is the
MPLPT path from the most negative machine torque to
the most positive. A 65 kW WRSM with the parameters
listed in Table I is used to validate the MPLPT formula-
tion and solutions. Figure 10 shows a cross section of the
machine.

TABLE I: WRSM Motor Drive Parameters

Parameter Value

Turns ratio Nf /Ns 39
Pole pairs 2

Stator resistance 11.732 mΩ
Rotor resistance (stator referred) 5.461 mΩ

Shaft inertia 22.76E-3 kg m2

Switching frequency 10 kHz
Sampling frequency 20 kHz

Nameplate r-axis inductance Lr 1.956 mH
Nameplate d-axis inductance Ld 2.420 mH
Nameplate q-axis inductance Lq 0.789 mH

DC-link voltage 325 V
Maximum power 65 kW
Maximum torque 220 Nm

In this case the motor has a torque range of 0 Nm/p to
112 Nm/p and copper loss range from 0 kW to 3.23 kW.
Figure 11 shows the set of points Γ and pareto frontier Γp

collected using FEA-simulated data for the WRSM. It is
clear from this example that there are too many pareto-
optimal points Γp to all be used in a MPLPT path.



Fig. 11: Experimental results: (Left) All simulated points Γ and pareto-optimal solutions Γp, (Right) corresponding
three-dimensional MPLPT currents that will be candidate points for MPLPT

The resulting pareto-convex points Γc are shown in
Figure 12. Applying the PWA map h(T ) to the set of
pareto-convex points yields the piecewise linear function
shown in Figure 13. The function h(T ) in this case follows
an occasionally jagged but mostly smooth curve. The
distance between the points varies. There are 60 points
in Γc and 59 line segments that create the PWA map.

Further filtering of points in Γc or a different way to
filter out points in Γ to produce a different h(T ) can be
implemented to obtain certain qualities in the MPLPT
path that can include: convexity, smoothness, and more.
Costs can be assigned to the distance between points,
angle of adjacent line segments, and other parameters.
These considerations are currently an active area of re-
search. The chosen method in this study strictly minimized
power losses for torque without consideration for other
potentially desirable qualities of the MPLPT path.

VII. Conclusion

In this study, the Minimum Power Loss per Torque
(MPLPT) problem was presented, and a novel numerical
solution is was proposed. The solution set was reduced
using convex pareto-optimal points, which were linked to-
gether in three-dimensional current space using Piecewise
Affine (PWA) functions to create a continuous current
path for all machine torques. The result was validated
using simulated FEA data and shows promising results.
Further research can be conducted to refine the MPLPT
path to give it qualities such as smoothness and convexity.
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