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Abstract—High-performance control of Wound Ro-
tor Synchronous Machines (WRSM) motor drives re-
quires a nonlinear magnetic model that captures mag-
netic saturation and cross saturation. This includes
Model Predictive Control (MPC), which has proven
to be effective with similar synchronous machines
such as the Permanent Magnet Synchronous Machine
(PMSM). Varying the inductance depending on ma-
chine operating point is modelled using Piecewise
Affine (PWA) Functions in the form of Look up Tables
(LUTs). PWA functions are used to create virtual-
flux in the r, d, and q-axis of the WRSM but can be
extended to account for other effects such as damper
windings, and zero-sequence current. A closed-loop
virtual-flux Constrained Finite Time Optimal Control
(CFTOC) MPC controller is formulated using PWA
in the state space equations, and a simulated setup
demonstrates the feasibility of the concept.

Index Terms—Flux estimation, Model Predictive
Control, Motor Parameters, Piecewise Linear Tech-
niques, Torque Control, Wound Rotor Synchronous
Machine (WRSM)

I. Introduction

Electric machines produce torque by combining arma-
ture current and magnetic flux linkage. This research
focuses on the wound rotor synchronous machine (WRSM)
that produces the main magnetic field with a rotor wind-
ing. WRSMs are a class of electric machines used in power
generation, traction (e.g., electric vehicles, EVs), and other
industrial and residential applications. They have several
advantages over PMSMs including: higher level of con-
trollability due to their ability to modulate rotor flux,
a large constant-power speed range, and increased cost-
effectiveness given that no expensive, rare-earth magnets
are required in production. However, WRSMs have certain
drawbacks when compared to PMSMs including: higher
copper losses due to the added rotor windings, and in-
crease mechanical complexity. Brushes and slip rings limit
power flow to the rotor, although there are designs for
wireless power transfer [1]. Finally, WRSM have a strong

(nonlinear) coupling between the direct (d) and rotor (r)
dimension.

Electric machines use ferromagnetic materials to max-
imize and channel magnetic flux. Such machines tend to
operate non-linear magnetic regime in general and exhibit
saturation and cross saturation [1]–[9]. The relationship
between current and flux linkage is modeled using Mag-
netic Models (MM) that are also also referred to as flux
linkage maps in literature. Such maps tend to be linearized
and expressed as inductances or transfer functions for
motor control. All controllers use an explicit or implicit
MM [10], [11].

Offline MM use one or a combination of Finite Element
Analysis (FEA) [4], [7], [12], analytical calculations [3],
[4], and experimental values [2]–[4], [7], [9]–[12] to mea-
sure inductances at various operating points. The discrete
values obtained by these methods are linked together using
a variety of methods, summarized in Table I. The majority
of WRSM controllers use a linearized, offline MM. These
include in sliding mode control [13], maximum torque [14],
passivity-based control [15], and predictive direct current
control [16]. Capturing non-linear flux is much simpler
using online estimation methods. Some examples include
Kalman filters [6], Flux-linkage observers [8], and iterative
numerical solvers [17]. Of these only [8] uses an advanced
state-space controller (DB-DTFC). Estimation and ad-
vanced control require additional microcontroller resources
and/or computation time to complete closed loop control
cycles.

This research proposes using PWA functions to build an
offline MM LUT to capture non-linear flux. These simplify
the state-space equations to be linear, decreasing compu-
tation time. The saved computation time can instead be
spent solving a CFTOC MPC problem, which has not been
shown in literature for a WRSM.

This paper is organized as follows. In Section II the
WRSM state-space model using PWA is presented. Sec-
tion III introduces the MPC optimization problem for a



TABLE I: Summary of Offline MM Linking Methods

Type of Link Linear Bidirectional Continuous Differentiable Saturation Cross-sat.

Linearized Inductance • • • •
Linearly Interpolated LUT • • •
Hermite and Spline LUT [12], [10], [11] • • • •
Polynomial Functions [7], [9] • • • •
Piece-wise Nonlinear Functions [2] • • • •
Other Nonlinear Functions [3], [4] • • • •
Piece-wise Linear (PWA) • • • • •

Fig. 1: WRSM motor drive (gray) with an example motor
controller (white) using MPLPT function (blue) to gener-
ate reference torque from reference current

WRSM. Section IV presents results of MPC in a simula-
tion, and Section V concludes the paper.

II. Piecewise Affine Motor Model
A. Dynamic Model and Flux Map

The three-phase WRSM can be described dynamically
as a state-space model [18]. For formal simplicity and the
common challenges of displaying spaces higher than three,
this research focuses on the most common WRSM used in
motor drives: a neutral-point isolated machine (without
zero-axis flux and current) and without damper windings.
However, it is noted that it is trivial to generalize this
research to higher dimensions. Throughout this research,
we use the power-invariant Clarke transformation and the
magnetic axis of the field winding is used as reference angle
of the Park transformation.

The voltage equations of this WRSM are

λ̇r = vr −Rrir = v̄r, (1a)
λ̇d = ωλq + vd −Rsid = ωλq + v̄d, (1b)
λ̇q = −ωλd + vq −Rsiq = −ωλd + v̄q, (1c)

where ˙ is the d
dt operator; λr ∈ R is the rotor, i.e.

field, flux linkage; λd, λq ∈ R are the d-axis and q-axis
stator flux linkages respectively; i ∈ R and v ∈ R are
the currents and voltages of the appropriate dimension;
Rr, Rs ∈ R+ are the rotor and stator resistances, and
ω ∈ R is the synchronous speed, i.e. the electrical velocity

of the machine. Furthermore, we introduce the voltages v̄
that are the terminal voltages compensated by the winding
resistive voltage drop. This concept can be generalized
to include compensation for inverter nonlinear behavior
such as switch on-voltage drops and dead-times [19]. The
machine currents map onto machine flux with a nonlinear
map φ : R3 → R3

λr = φr(ir, id, iq), (2a)
λd = φd(ir, id, iq), (2b)
λq = φq(ir, id, iq), (2c)

that captures magnetic coupling between axis, magnetic
saturation, and cross-saturation [18]. These equations can
be written as a standard state-space systems in discrete
time with sampling period Ts

λ+
rdq = f(λrdq, v̄rdq), (3a)
irdq = g(λrdq), (3b)

where the state is the flux λrdq = [λr, λd, λq]T ∈ Λ, the
input is the compensated voltage v̄rdq = [v̄r, v̄d, v̄q]T ∈ V,
and the measurement is the current irdq = [ir, id, iq]T ∈ I.
The state-space variables are finite in all dimension that
are approximated with box constraints

I = {irdq ∈ R3|Imin ≤ irdq ≤ Imax}, (4a)
V = {v̄rdq ∈ R3|V̄min ≤ v̄rdq ≤ V̄max}. (4b)

The flux constraint is defined as a derivative of the cur-
rent constraint Λ = φ ◦ I. Furthermore, the flux (and
current) constraints are chosen such that the rotor flux
(and current) is positive λr ≥ 0 (and ir ≥ 0) without loss
of generality.

The dynamic equation is expressed in vector notation
as [20]

frdq(λrdq, v̄rdq) = (I − ωTsJ)λrdq + Tsv̄rdq, (5)

where J is the 90° rotation matrix in the dq plane

J =

 0 0 0
0 0 −1
0 1 0

 . (6)

The output function grdq : R3 → R3 is the inverse of the
nonlinear flux map φ(·) = [φr(·), φd(·), φq(·)]T . Typically,
φ(·) is bijective and the output function is defined as

grdq(λrdq) = φ−1(λrdq) (7)



Fig. 2: Mesh of simplices IM = {I1, I2 . . . Im} in current
space (left), and mesh of simplices ΛM = {Λ1,Λ2 . . .Λm}
(right) in flux space

The map φ(·) is typically obtained with with finite
element analysis (FEA) or obtained with experimental
measurement campaigns. This approach describes the map
φ(·) by N tuples of currents ij and flux linkage λj with j ∈
{0, 1, . . . , N}. The sets of points containing all measure-
ments IP = {i1, . . . , iN } ⊂ I and ΛP = {λ1, . . . , λN } ⊂ Λ
are assumed to be in a general position to define a lookup
table (LUT) that approximates the map φ(·). The data is
typically ordered in the first variable to simplify searching
a LUT.

The equation for relating current to flux linkage in the
WRSM without saturation has the form

λrdq = Lrdqi+ ψrdq, (8)

where Lrdq ∈ R+
3×3 is the inductance matrix and ψrdq ∈

R3×1 is the flux-offset vector

Lrdq =

 Lrr Lrd Lrq

Ldr Ldd Ldq

Lqr Lqd Lqq

 , ψrdq =

 ψr

ψd

ψq

 . (9)

The diagonal terms of L are the self-inductances of the
rotor (Lrr) and stator (Ldd, Lqq), while the non-diagonal
terms are the mutual inductances between the three axis.
Typically Lrq, Ldq, Lqr, and Lqd are negligible while Ldr

and Lrd create the cross coupling effect.

B. Alpha-Beta Form
If the αβ form is preferred, the measured currents and

fluxes become

λrαβ = P−1(λrdq) (10a)
irαβ = P−1(irdq) (10b)

(10c)

where P−1 is the inverse Park transform matrix. The
dynamic equation can be re-derived in matrix form as

frαβ(v̄rαβ) = Tsv̄rαβ , (11)

with the cross coupling speed ω terms eliminated. The
output function becomes

grαβ = P−1(θ) φ−1(P(θ) λrαβ). (12)

Fig. 3: WRSM flux vs current: experimental (blue), ex-
ample linearization through origin (orange), example of
three-segment PWA (yellow)

C. PWA Domains and Flux Maps
This research proposes to express the WRSM magnetic

model as piecewise-affine (PWA) map. PWA maps divide
a nonlinear map into M domains over which the function
is linearized [21]. Hence we express the PWA current to
flux map as

λ = φ(i) ≈ φP W A(i) =


L1i+ ψ1, i ∈ I1,

L2i+ ψ2, i ∈ I2,

· · ·
LM i+ ψM , i ∈ IM ,

(13)

where λ = Lji + ψj is the affine equation that maps
currents i ∈ Ij onto fluxes λ ∈ Λj and Λj is the image
of the domain Ij . An example PWA is shown in Figure 3.

Similarly, we can express the PWA flux to current map

i = φ−1(λ) ≈ φ−1
P W A(λ) =


L−1

1 λ+ L−1
1 ψ1, λ ∈ Λ1,

L−1
2 λ+ L−1

2 ψ2, λ ∈ Λ2,

L−1
M λ+ L−1

M ψM , λ ∈ ΛM .

(14)

The affine map is defined by the the inductance matrix
and a flux offset. Figure 4 shows φP W A(i) in various
resolutions.

PWA maps divide the original domain into M sets.
We define each subset to be a simplex, which is the



simplest possible polytope in any D-dimensional space and
a tetrahetron in the three dimensions of the given problem.
A D-dimensional simplex can be defined as the convex hull
of its D+1 vertices (called the V-notation; alternatively, a
simplex can be defined by its by its faces defined as affine
inequalities called the H-notation [22])

Ij = H({ij0 , ij1 , . . . , ijD
}), (15)

where ij0 , . . . , ijD
∈ IP . Each current simplex Ij forms a

domain of an affine map that maps into the flux simplex

Λj = H({λj0 , λj1 , . . . , λjD
}), (16)

where λj0 , . . . , λjD
∈ ΛP . The general position of the

defining set of measurement points implies that the ver-
tices of each simplex are linearly independent and full
dimension (not degenerate). A full current domain can
thus be divided into many simplices that only overlap on
their edges and adjacent faces. This simplical complex,
or current mesh, IM has a corresponding flux mesh ΛM ,
shown in Figure 2.

III. Model Predictive Control

A. State Space Model
Model Predictive Control (MPC), or Receding Horizon

Control (RHC), is a method of control that solves a
constrained finite time optimal control (CFTOC) problem
that finds the minimal-cost path from a start state to and
end state.

In this problem the αβ form of the machine equations
is preferred. The state equation is equation 11 and the
output equation is equation 12 both in discrete time. In
the αβ form, the state equation has no dependence on
speed ω and is linear. For the rest of this section it can be
assumed fluxes λ, currents i, and terminal voltages v̄ are
in rαβ form.

B. Receding Horizon Control
RHC provides an optimal input v̄ to the plant by

computing a set of inputs V0→N that reaches a desired
state λN from a starting state λ0 in N time steps, then
choosing the first value of the set. N is called the horizon
length.

The known state variable at the present time k is
denoted λ(k), a calculated future state variable at time
k is denoted λk, and the state predicted for time t + k
computed at time k is denoted λt+k|k. The same notation
is valid for inputs v̄.

An input trajectory of length N where the input starts
at v̄0 is denoted as the set

V0→N = {v̄0, . . . , v̄N−1}. (17)

The starting state is denoted λ0 and the value of the input
and state at the end of the trajectory are denoted v̄N , λN

respectively.

A cost J0 for a given a trajectory can be calculated by

J0(λ0, i0) , λ′
N PλN +

N−1∑
k=0

v̄′Qv̄ (18)

where λk and v̄k are the state and input at some time k
in the trajectory.

The cost function has two components. The first is called
the “terminal cost” and uses the matrix P ∈ R+

3x3 to
penalize the trajectory based on how close the final state
λN is against the desired state. The second component is
called “stage cost” which uses the matrix Q ∈ R+

3x3 to
penalize the sum of change in state over all steps.

Sometimes an additional term v̄′Rv̄ called the “input
cost” is used to penalize the sum of change in input over
all steps. When using voltage-source inverters, we can set
R = 0 because changing the terminal voltage of is not
associated with any significant drawbacks, so this term is
not included.

The CFTOC problem can is defined as

J∗
0 (λ(t)) = minV0→N

J0(λ(0),V0→N ), (19a)
subj. to λk+1 = f(λ, v̄), k = 0, . . . , N − 1,

(19b)
λk ∈ Λ, v̄k ∈ V, k = 0, . . . , N − 1,

(19c)
λN ∈ Λf , (19d)
λ0 = λ(0), (19e)

where J∗
0 is the optimal cost or value function, Λf is the

terminal region that the final flux λN must be in by the
Nth step, and λ0 is the defined starting state which is the
same as the known state it is currently in λ(0). A simple
definition of the terminal region Λf is an area within some
ε distance from the desired state λ∗,

Λf = λ∗ + ε, ε ∈ R3. (20)

There exists at least one optimum cost and trajectory
if V0→N is compact and f(λ, v̄) and v̄′Qv̄ are continuous.
The optimal output trajectory to the problem is denoted

V∗
0→N = {v̄∗

0 , v̄
∗
1 , . . . , v̄

∗
N−1}. (21)

At t = 0 the first solution of the trajectory is the input
to the system, at t = 1 the CFOTC problem is re-solved
and first input of the new trajectory is the input to the
system. This process is repeated indefinitely

v̄(0) = v̄∗
0|0(λ(0)), (22a)

v̄(1) = v̄∗
1|1(λ(1)), (22b)

... (22c)
v̄(t) = v̄∗

t|t(λ(t)). (22d)

In each case, the horizon length is always N time steps
ahead of the current time, thus the horizon is constantly
being pushed further ahead in time, or “receding” from
the present viewpoint.



Fig. 4: PWA using 3 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5 and 8 × 8 × 8 regularly sampled current grids: (left) λr vs id and id
sliced at iq = 0, (middle) λd vs ir and id sliced at iq = 0, (right) λq vs iq and ir sliced at id = 0.

Fig. 5: WRSM cross section showing a saturated flux
density B distribution in Tesla at iq = 1[pu] (left), and
id = 1[pu] (right)

Let ct : R3 → R3 denote the RHC control law that
associates an optimal input v̄∗

t|t after solving the CFTOC
to the state λ(t)

ct(λ(t)) = v̄∗
t|t. (23)

By combining the control law for any arbitrary positive
time k (denoted ck), with the system plant (equation 11)
the closed-loop control equation ccl is

ccl(λ(k)) , λ(k + 1) = Tsck(λ(k)), k ≥ 0. (24)

IV. Results
The CFTOC problem in equation 19 is solved using the

Multi-Parametric Toolbox 3.0 (MPT3), which is uniquely
designed to solve MPC with PWA system functions [23].
As shown in Figure 1, the measured state flux λ is
calculated using the feedback current i and the PWA map
in equation 13.

The MPT3 solver solves the CFTOC problem in equa-
tion 19 using a linear complementarity problem (LCP)
solver that can solve linear problems (LP) and quadratic
problems (QP) [24]. The output is a (completly seperate)
PWA function which has a different function for each
combination of active and inactive equality constraints.

A 65 kW WRSM with the parameters listed in Table II
is used to validate the MPLPT formulation and solutions.
Figure 5 shows a cross section of the machine.

TABLE II: WRSM Motor Drive Parameters

Parameter Value

Turns ratio Nf /Ns 39
Pole pairs 2

Stator resistance 11.732 mΩ
Rotor resistance (stator referred) 5.461 mΩ

Shaft inertia 22.76E-3 kg m2

Switching frequency 10 kHz
Sampling frequency 20 kHz

Nameplate r-axis inductance Lr 1.956 mH
Nameplate d-axis inductance Ld 2.420 mH
Nameplate q-axis inductance Lq 0.789 mH

DC-link voltage 325 V
Maximum power 65 kW
Maximum torque 220 Nm

TABLE III: MPC Simulation Parameters

State Space Cost

A = D =

[
0 0 0
0 0 0
0 0 0

]
P =

[
1 0 0
0 1 0
0 0 1

]

B = C =

[
1 0 0
0 1 0
0 0 1

]
Q =

[
1 0 0
0 1 0
0 0 1

]

The MPC controller is built using the MPT3 toolbox
in a Matlab-Simulink simulation, and has the parameters
shown in table III and a horizon length of N = 2.

The simulation of a torque and speed step using the
described MPC controller is shown in Figure 6. The
controller is programmed and simulated in rαβ but for
plotted and descrbied in rdq for simplicity. The simulation
begins by fluxing up the rotor flux λr with a reference
flux λ∗

r which by the cross-coupling mutual inductance
also fluxes the stator d-axis flux λd. The rotor requires a
constant flux reference to sustain its flux throughout the
simulation. Then at t = 0.2 s a 2000 rpm speed step is
initiated using a q-axis flux λ∗

q which is controlled by a PI
speed controller. The speed step briefly takes the machine
near its limit in torque (100 Nm/p or 200 Nm out of 220



Nm). Then after the transients have settled, at t = 0.4 s a
25 Nm/p torque step begins. The transient response of the
MPC controller adequately shows the feasibility of MPC
for the WRSM.

Fig. 6: Torque step, Speed step using MPC on a simulated
WRSM

V. Conclusion
In this study the dynamic equations of the WRSM

were redefined using a Piecewise-Affine (PWA) function
to model the highly nonlinear flux-linkage relationship
between current and flux in the machine. A model predic-
tive controller (MPC) was formulated and implemented in
a simulation environment, showing adequate results and
proving that that the novel dynamic state space model
in conjunction with MPC is viable for speed and torque
control of the WRSM.
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