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Abstract—A receding horizon estimation (RHE) method is
designed in combination with model predictive control (MPC) to
improve the dynamic performance of LC-Based Power Module
with low cost. Symmetrically mirrored to the MPC, the RHE
is configured as a constrained finite time optimal estimation
(CFTOE) problem to solve the quadratic cost function based
on the past sampling information. An integrated RHE-MPC
control method is designed for LC-based power module to
formulate power conversion system with high performance. With
the designed RHE, the sensor count is reduced with less noise.
And the highly accurate RHE contributes to the correction of
possible modeling parameters or sampling errors. The integration
of RHE and MPC improves the steady state and dynamic
performances with less noise, more robust behavior and higher
control bandwidth. The proposed methods have been validated
experimentally on the power module testbench.

I. INTRODUCTION

STATE estimation is a key part for power electronics to
reduce the system cost and improve the dynamic per-

formance. Some conventional estimation methods have been
applied in the power converters, such as Luenberger Observer,
Kalman Observer and Sliding Mode Observer, etc [1]. The
state observers are typically leveraged to estimate the state
variables based on the measurement information. An advanced
estimation method, called receding horizon estimation (RHE)
is designed in this paper combined with the model predictive
control (MPC) to improve the steady state/dynamic perfor-
mances and reduce the sensor count [2].

State estimator is a typical technique to improve the power
quality and reduce the cost for power converters. In a power
electronics system, the voltage/current samplings are crucial
parameters that could directly influence the performance of
power control. Due to the hardware limitations, e.g., EMI
noise from the high power traces, measurement error, of the
sensing circuits, the control system could be interfered by the
sampling noise or oscillation. The state estimation can be a
substitute for part of the ADC sampling information to reduce
the noise/oscillation from the corresponding sensors [3]. Also,
the state estimation contributes to the reduction of sensor count
and system cost. Conventionally, the Luenberger Observer is a
basic state estimation method and has been widely used in the
industry applications which is a linear type of observer and
can be easily implemented in the digital control systems [4].
Besides the Luenberger Observer, receding horizon estimation
(RHE) is a more advanced estimation approach that leverages
a series of past measurements to derive the desired accurate

state values by solving a constrained optimization problem
[5], [6]. The RHE has been verified for the application of
virtual flux estimation in electric machine to estimate the
position and speed [7], [8]. Few studies have been focusing on
the applications of different topologies to be interfaced with
wider ranges of load/source. Also, the computation burden
for the RHE on low cost DSP is a crucial topic that needs
to be addressed for the popularization of the technique. This
paper develops a general explicit RHE-MPC method for power
modules that could be applied to various types of power
converters with different load/source interfaces on a low cost
DSP.

Model predictive control (MPC) is an option for the pro-
motion of dynamic performance and resonance damping, espe-
cially in high order filter system [9], [10], [11], [12]. Different
from the conventional proportional-integral (PI) control, the
MPC has been validated to have the advantages of better
dynamic performance, including less rising time, overshoot
and oscillation during transient [13], [14], [15], [16]. Several
MPC algorithms have been studied in the field of power
converters for motor traction or grid-connection [17], [18],
[19]. However, the combination of MPC and RHE for a general
application and low cost implementation purposes have not
been addressed in details. The MPC and RHE are actually
two symmetrical algorithms in the time series where RHE is
focusing on the past sampling information and MPC is for the
future steps. This paper integrates the RHE and MPC on a
generalized power module which could be applied to various
interfaced applications without consuming high computation
burden on the controller.

This paper is organized as follows. Firstly, since the combi-
nation of RHE and MPC are co-designed with a unified state
space model for an LC-based power module, the system mod-
eling of the LC-based power module is introduced. Secondly,
the specific RHE and MPC algorithms are analyzed and imple-
mented on the LC-based power module. Finally, the designed
RHE and MPC algorithms are validated experimentally on the
power module testbench.

II. SYSTEM MODELING

The system modeling of the LC-based power module is
analyzed in this section. The circuitry diagram of the basic LC
power module is shown Fig. 1 which consists of upper/lower
switches, M1 and M2, switch side inductor, Lfs, upper/lower
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Fig. 1: LC-based power module with output side inductor.

output capacitors, Cf,up and Cf,low. An output side inductor,
Lfo, can also be connected to formulate an LCL converter.
The desired number of introduced basic LC-based power
modules can be connected and reconfigured to formulate
different types of topological applications such as multi-phase
DC/DC or DC/AC converters.

The state space equations for the LC-based power module
can be expressed as:

i̇Lfs(t) = − 1

Lfs
vCf (t) +

vin
Lfs

d(t) (1a)

v̇Cf (t) =
1

Cf
iLf (t)−

1

Cf
iLfo(t). (1b)

i̇Lfo(t) =
1

Lfo
vCf (t)−

1

Lfo
vo(t). (1c)

where Lfs, Cf and Lfo are the switch side inductor, output
capacitor and output side inductor, respectively. iLfs, vCf ,
iLfo and vo are the switch side inductor current, output
capacitor voltage, output side current and output voltage.

III. ESTIMATION AND CONTROL

The proposed integrated receding horizon estimation and
model predictive control (RHE-MPC) method for LC-based
power module is analyzed in this section. These two advanced
techniques are all configured by solving the constrained finite
time optimization problems to increase the modeling/sampling
accuracy, reduce the hardware cost, enhance the anti-noise
capability and improve the steady state/dynamic performances.
These two techniques, RHE and MPC, are integrated based
on a monolithic state space model of LC power module by
dealing with two sets of ADC sampling data. The two sets
of sampling data for RHE and MPC are symmetric in time
sequences for the past and future, respectively.

A. Receding Horizon Estimation

Different from the traditional Luenberger observer, receding
horizon estimation is designed to solve a constrained finite
time optimal estimation problem that requires a sequence of
past sampling information [20]. The general theory and the
implementation for the LC-based power module are analyzed
in this section [5], [21].

The RHE method is applied to the LC-based power module
for the optimal estimation [22]. Considering the huge current
ripple on the switch side inductor current measurement, iLfs,

Fig. 2: RHE-MPC Control diagram of LC-based power mod-
ule.

and the challenges to accurately sample the averaged iLfs,the
receding horizon estimator (RHE) is designed for per phase
power module to provide more accurate switch side inductor
current estimation and noise rejection for the MPC controller
[23]. The main purposes of the state estimator are (1) avoid
inaccuracy of inductor current sampling with high current
ripple; (2) improve the anti-noise capability for better control
performance; (3) reduce the sensor cost.

The RHE is implemented by solving the Constrained Finite
Time Optimal Estimation (CFTOE) problem to derive the
optimal estimated values of switch side inductor current,
îLfs, capacitor voltage, v̂Cf , and grid side inductor current,
îLfo, with the samplings of capacitor voltage, vCf , and grid
side inductor current, iLfo. The state-space equations for the
discrete-time RHE can be expressed in standard matrix format
of

X̂k+1 = AEX̂k +BEuk (2a)

Ŷk = CEX̂k +DEuk (2b)

where the variables and matrices for RHE represent

AE =

 0 − Ts

Lfs
0

Ts

Cf
0 − Ts

Cf

0 0 0

 , BE =

 Ts

Lfs

0
0

 , (3a)

CE =

[
0 1 0
0 0 1

]
, DE =

[
0
0

]
, (3b)

X̂k =

 îLfs(k)
v̂Cf (k)

îLfo(k)

 , Ŷk =

[
v̂Cf (k)

îLfo(k)

]
. (3c)

Based on the RHE state-space equations in (2), the RHE
solves for the optimal estimated state variable sequence
of X̂M , ..., X̂0 with the known past measurement sam-
pling sequence of YM , ..., Y0 and input variable sequence of
uM , ..., u−1. The cost function of RHE optimization problem
is composed of two parts:
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Fig. 3: Relationship between receding horizon estimation and
model predictive control.

(1) Minimization of error between state equation (2a) and
estimated state variable X̂j+1 which can be expressed as

eX,k = (AEX̂k +BEuk)− X̂k+1; (4)

(2) Minimization of error between state equation (2b) and
measured sampling output variable Yj which can be expressed
as

eY,k = (CEX̂k +DEuk)− Yk. (5)

Thus, the RHE cost function for the CFTOE optimization
can be expressed as

min

−1∑
k=M

eTX,kQEeX,k +

0∑
k=M

eTY,kREeY,k (6)

where QE and RE represent the weighing factor matrices of
the penalties that are implemented on the state variables and
output variables, respectively.

The constraints of the RHE controller can be expressed as

eX,k = (AEX̂k +BEuk)− X̂k+1 ∈ EX (7)

eY,k = (CEX̂k +DEuk)− Yk ∈ EY (8) −ILfs,max

0
−ILfo,max

 ≤ X̂k ≤

 ILfs,max

vin
ILfo,max

 (9)

[
0
]
≤ uk ≤

[
vin

]
(10)[

0
−ILfo,max

]
≤ Yk ≤

[
vin

ILfo,max

]
. (11)

The working mechanisms of RHE and MPC are symmet-
rical with respect to the present state. Specifically, RHE is
dealing with the states from past to present steps and MPC
is optimizing the states from present to the future steps. The
relationship between RHE and MPC has been shown in Fig.
3.

Fig. 4: Explicit implementation of RHE and MPC with online
search tree.

B. Model Predictive Control

The MPC algorithm is derived by solving the constrained
finite time optimal control (CFTOC) problem [24]. A cost
function can be configured to minimize the tracking error
between the state variable vector, x(k), and the references,
x(k), by predicting a series of future input variable, u(k) [25].
The cost function can be generally expressed as:

argmin
x(1),...,x(N)

u(1),...,u(N−1)

N−1∑
k=0

eTx,kQCex,k+

N−1∑
k=0

eTu,kRCem,k+eTu,NPCex,N .

(12)
And the constraints are followed by:

s.t. ex,k = x(k)− x(k) (13a)
eu,k = u(k)− u(k − 1) (13b)
x(k) ∈ X (13c)
u(k) ∈ U (13d)

where k > 0 in (12) and (13) means the information are
expected for the prediction of the future instants. The weighing
matrices, QC and RC , provide the penalties on the tracking
errors and control input variations, respectively. The matrix,
PC , is defined as the terminal cost which is a basic term in
MPC that connects the properties between the finite time MPC
and the infinite time LQR. The terminal cost is used to make
sure of the stability, robustness and convergence.

IV. CAPACITOR AND INDUCTOR DESIGN FOR STABILITY

The capacitor and inductor values design for the filtering
circuit are analyzed in this section. The main standard that
needs to follow is the grid current/voltage waveforms quality
[26], [27]. The specification can be found from IEEE STD
519 to choose the value of grid side inductor, Lg , for the
attenuation grid current harmonics.

For the switch side inductor, the minimum inductance,
Lf,min, can be determined by the maximum required current
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Fig. 5: The integrated RHE and MPC control diagram for the
DC/DC interfaced application with LC-based power module.

(a)

(b)

Fig. 6: RHE-MPC (a) experimental and (b) zoomed wave-
forms of output current, capacitor voltage, inductor current
for DC/DC converter.

ripple, ∆iL,max, with the duty cycle of 0.5, d, switching
frequency, fsw, and DC bus voltage, Vdc

Lf,min =
d(1− d)Vdc

fsw∆iL
. (14)

With the desired grid/switch side inductance determined, the
capacitance can be designed by the minimum output voltage
ripple, uripple and the resonant frequency of the LCL filter,
ωres. Specifically, the minimum capacitance is determined by
the output voltage ripple which is expressed as

Cf,up,min + Cf,lo,min =
1− dmin

8Lfuripple[%]f2
sw

. (15)

Then, from the minimum available Cf,up,min and Cf,lo,min,
the value of capacitance can be adjusted to determine the
resonant frequency of LCL filter system as is shown in

ωres =

√
Lf + Lg

LfLg(Cf,up + Cf,lo)
. (16)

Based on (16), the capacitor values can be finally determined
to choose a specific resonant frequency of the LCL filter.

(a)

(b)

(c)

Fig. 7: RHE estimation performance of the experimentally
captured steady state ADC readings of measurement and
estimation for grid-interfaced (a) inductor current (b) capacitor
voltage and (c) grid current.

Fig. 8: MPC tracking performance of the experimentally
captured steady state ADC readings of capacitor voltage for
the DC/DC application.

Then, with the help of ωres and LCL parameters, the control
bandwidth, ωc, can be further designed to avoid the excitation.

V. APPLICATIONS AND RESULTS

The application for the developed RHE-MPC technique in
DC/DC interfaced power converter in Fig. 5 is tested experi-
mentally. The combined RHE-MPC algorithms are configured
in the LC-based power module to control the output voltage,
vo. Specifically, the output capacitor voltage, vCf , and output
current, io, are directly measured as the output variable matrix,
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Yk, in (2). The inductor current, îL, output capacitor voltage,
ˆvCf , and output current, îo, are configured as the estimated

state variable matrix, X̂k. Based on the RHE cost function in
(6) and the corresponding constraints in (7)-(11) to deal with
the past sampling information within the estimation horizon,
the optimal estimation of X̂k will be derived for the purpose
of MPC control process with less noise.

Symmetrically with RHE, the MPC manages the future
sampling information within the prediction horizon to derive
the optimal input variable matrix, uk, of duty cycle by solving
the MPC cost function and the corresponding constriants.
Instead of using the noisy sampling state variables of Xk,
the MPC utilizes the estimated state variables, X̂k, from RHE
to track the output capacitor voltage reference with less noise
and oscillation.

Fig. 6 shows the output current, capacitor voltage and in-
ductor current waveforms of the DC/DC converter with RHE-
MPC method. The DC/DC application results demonstrate
that RHE can reduce the noise and oscillation. Furthermore,
for the DC/DC application, the experimentally captured ADC
readings of measurement and estimation for inductor current,
capacitor voltage and output current are shown in Fig. 7. Fig.
8 shows the MPC reference and measurement for DC/DC
converter output capacitor voltage where the MPC accurately
tracks a voltage reference of 50V. The sampling noise from
sensor is largely reduced by RHE for a more stable perfor-
mance.

VI. CONCLUSION

This paper developed a RHE-MPC combined algorithm to
improve the steady state/dynamic performance of an LC-
based power module. The general theories of RHE and MPC
are introduced. The developed algorithms are implemented
on a DC/DC application by connecting the LC-based power
modules with a resistive load. Half of the current sensors are
saved with the RHE method. The experimental results show
the RHE and MPC have good anti-noise capability.
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