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Abstract: Accurate flux linkage magnetic models are essential for virtual-flux controllers in PMSMs.
Flux linkage exhibits saturation and cross-saturation at high currents, introducing nonlinearities into
the machine model. Virtual-flux controllers regulate the flux of a machine by using field-oriented
control, such as model predictive control. In this study, a methodology for creating a piecewise affine
flux linkage magnetic model is proposed which locally linearizes the inductance and flux offset of
the machine. This method keeps the magnetic model and thus the state-space model of the system
linear while capturing the saturation effects, enabling robust controls and efficient operation. The
model is created using FEA-simulated data points and verified with experimental datapoints. An
algorithm to optimize the model in MTPA and derated operation is presented with an average flux
error less than 1% and maximum error less than 3% using only 40 points. This represents a ≈ 1–3%
and ≈ 5–8% reduction in the average and maximum flux errors compared with a regularly gridded
model, respectively.

Keywords: flux estimation; motor parameters; piecewise linear techniques; permanent-magnet
synchronous machines

1. Introduction

Permanent magnet synchronous machines (PMSMs) are the machine of choice for
high energy density applications due to their high efficiency and mechanical simplicity.
The PMSM has seen widespread adoption in the automotive space [1,2], and is a promising
candidate for more-electric and all-electric air propulsion drives [3,4].

The controller performance for a PMSM depends on the accuracy of the machine
parameters, such as the stator inductances, stator resistance, and permanent magnet (PM)
flux. These parameters can change in real time and have dependencies on the temperature,
position, and current. The stator resistance increases nonlinearly with the temperature [5],
the PM flux can decrease (demagnetize) at high temperatures [6], and the stator inductance
saturates in high currents [7]. These variations are typically accounted for using online
parameter estimation, offline parameter look-up tables (LUTs), or a combination of the two.

Online parameter estimation uses real-time feedback of the drive system to estimate
the parameters. The feedback can include the current, voltage, speed, and position. Online
parameter estimation methods include receding horizon estimation [8], recursive least
squares [9], neural networks [10], and extended kalman filters [11].

The offline parameter LUTs use the data of the machine from analytical calcula-
tions [12], FEA analysis [6,13], and experimentation [14,15] (or any combination) to approx-
imate the parameters given various operating points of the machine. The datapoints are
interpolated in various ways to produce various desirable properties depending on the
parameter and application.

Online parameter estimation requires more computation time than offline LUTs but is
more accurate over the lifetime of the vehicle by detecting degradation and partial faults in

Energies 2022, 15, 7259. https://doi.org/10.3390/en15197259 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197259
https://doi.org/10.3390/en15197259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3796-0358
https://orcid.org/0000-0002-4273-9597
https://orcid.org/0000-0002-2461-8388
https://orcid.org/0000-0002-6713-2978
https://doi.org/10.3390/en15197259
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197259?type=check_update&version=1


Energies 2022, 15, 7259 2 of 14

the machine [9,11]. Online parameter estimation also requires either more sensors or sen-
sorless techniques [16] than offline LUTs.

The focus of this study is the flux linkage magnetic model (MM) of the PMSM and the
modeling of the stator inductance parameters. To build an offline MM, the current and
flux values are processed offline, and continuous inductance functions are created using
linear interpolation, Hermite spline interpolation [15,17,18], polynomials [13,19], piecewise
nonlinear functions [14], nonlinear functions [12,20], or piecewise affine functions [21].
The results of these methods vary greatly in their properties, as summarized in Table 1 (the
MM accuracy for the linearized inductance, spline-interpolated LUT, and piecewise linear
methods is shown in Section 5).

Table 1. Summary of offline MM linking methods.

Type of Link Lin. Bidir. Cont. Diff. Sat. Cross-Sat. 1

Linearized Inductance [22,23] • • • •

Linearly Interpolated LUT • • •

Spline-Interpolated LUT [15,17,18] • • • •

Polynomial Functions [13,19] • • • •

Piecewise Nonlinear Function [14] • • • •

Other Nonlinear Function [12,20] • • • •

Piecewise Linear (PWA) [21] • • • • •

1 Linear, bidirectional, continuous, differentiable, saturation, and cross-saturation, respectively.

Model predictive control (MPC) is desirable for the PMSM for its stability and robust-
ness properties [22,23]. A virtual-flux MPC (VF-MPC) is a type of VF control that requires
a linear flux linkage MM to operate effectively. For this reason, typically, VF-MPC for the
PMSM uses linearized stator inductances, which have the effect of linearizing the state-
space equation. This greatly simplifies the model, reducing the control error and decreasing
the computation time. However, this leads to a flux error of up to 30% in full saturation
and 5–20% flux error due to cross-saturation [14,15,19,21].

In this study, we propose using piecewise affine (PWA) functions to build the MM of a
PMSM machine. This MM allows for the use of VF-MPC while also taking into account the
saturation and cross-saturation effects in the MM. The PWA MM is optimized for current
operation, derated operation, and MTPA operation. The experimental flux is compared
with the FEA-simulated flux to show the accuracy of the MM.

This paper is organized as follows. The PMSM machine model is described in Section 2,
and the construction of the PWA MM is shown in Section 3. The optimization of the PWA
MM to the full current range, derated range, and MTPA range is presented in Section 4.
Analysis via simulated and experimental results is presented in Section 5, and the paper is
concluded in Section 6.

2. PMSM Model

The PMSM is a three-phase synchronous machine that can be dynamically described
by the state-space model

λ̇d = ωλq + ud − Rsid = ωλq + ūd, (1a)

λ̇q = −ωλd + uq − Rsiq = −ωλd + ūq, (1b)

where λd and λq are the q-axis and d-axis stator flux linkages, respectively, ud and uq are the
terminal voltages, id and iq are the stator currents, ω is the electrical speed of the machine,
Rs is the stator resistance, and (·) is the d

dt operator.
This formulation makes use of the Parke–Clarke transformation, which is a linear trans-

formation from a three-phase (three-dimensional) to a direct-quadrature (two-dimensional)
space. The power-invariant Clark transform is used, and the magnetic axis of the PM is the
reference angle for the d-axis in the Park transformation.
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The compensated terminal voltages ūd and ūq are the terminal voltages without
the resistive voltage drop. The compensated terminal voltages are capable of including
the inverter non-idealities, such as the switch’s on-voltage drops and dead times [13,23].
The PWA formulation, presented later, is capable of including parameters not present, such
as damper windings and zero-sequence currents, but they are omitted for simplicity. Addi-
tionally, position-dependent effects can be added to the PWA model as third, fourth, ...nth

dimensions of the existing two-dimensional dq PWA model. This formulation is compatible
with any PMSM machine, regardless of the salience ratio (IPMSM, SPMSM, etc.).

The torque of a PMSM is modelled as follows:

T = pi′Jλ, (2)

where the number of pole pairs is p, i = [id iq]′ ∈ I is the current vector, λ = [λd λq]′ ∈ Λ
is the flux vector, and J is

J =
[

0 −1
1 0

]
, (3)

which is the cross-coupling matrix. The sets I and Λ describe the full operating current
and flux range of the machine.

The relationship between the current i and flux λ is nonlinear. Cross-saturation makes
the d-axis flux dependent on the d-axis current and q-axis current. The same holds for the
q-axis flux. The functions f (i) and g(λ) model this relationship:

λ = f (i) (4a)

i = g(λ). (4b)

The function f (i) is useful for calculating or estimating the flux of the machine λ given
the feedback currents, while g(λ) is useful when estimating i using an observer instead
of direct measurement [8,10]. Typically, g(λ) is more computationally difficult to obtain
than f (i).

An example motor drive controller set-up is shown in Figure 1, where a three-phase
inverter is supplied by udc and supplies the PMSM with three-phase voltages uph and
currents iph. The input to the controller is a reference torque T∗, which is translated to a set
of reference dq phase currents i∗dq by an MTPA function. This reference current i∗dq and the
fedback and transformed current idq are independently converted to flux using the fPWA
flux linkage map. The resulting reference flux λ∗dq, feedback flux λdq, and feedback angle θ

go into a virtual flux (VF) controller, such as a VF-MPC. The output is a set of reference dq
voltages u∗dq which are transformed to phase voltages u∗abc and modulated into duty cycles
Dabc fed to the inverter. This controller demonstrates the order of operations that a DSP
can use to implement VF control and the importance of the MM, as it is the only control
block used twice in the diagram.

The map f (·) is typically a LUT that is built using measured or Finite Element Analysis
(FEA) points that are sampled and interpolated by some method. The map f (·) and
torque, created using spline-interpolated FEA datapoints, for a machine with parameters
in Table 2 is shown in Figure 2. The FEA method uses a simulated machine model which
includes the machine’s geometry and magnetic properties to approximate the (nonlinear)
inductance throughout the machine for a wide range of operating points using the Finite
Element Method (FEM). This inductance map is then sampled at high resolution and spline
interpolated to create a high fidelity reference MM, fS(i) (capital S denoting reference),
which is the reference for error calculations in Section 5.
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Figure 1. Example motor drive system (gray) and virtual flux controller architecture (white) demon-
strating the use of the PWA MM flux linkage map.

Figure 2. (top) (left) The d-axis flux linkage map, (middle) q-axis flux linkage map, and (right)
torque function. (bottom) (left) The d-axis iso-flux lines, (middle) q-axis iso-flux lines, and (right)
iso-torque lines.

Table 2. PMSM motor drive parameters.

Parameter Value

Type Interior PM synchronous machine (IPMSM)
Rated current irated 10 A
Rated torque Trated 8.0 Nm

Rated flux λrated 142.5 mWb
Inductance (d-axis) Ld 9.1 mH
Inductance (q-axis) Lq 14.6 mH

Stator Resistance Rs (@ 20C) 636 mΩ
PM rotor flux ψ 88.3 mWb

Pole pair p 5
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The compensated terminal voltages can be described by the vector ū = [ūd ūq]′ ∈ U ,
where U is the voltage operating range of the machine. Thus, the machine can be described
as a standard linear state-space system in the form

λ̇ = Aλ + Bū, (5a)

i = g(λ), (5b)

where the A and B matrices are

A =

[
0 ω
−ω 0

]
, B = I =

[
1 0
0 1

]
. (6)

The flux λ is the state, the compensated voltages ū are the input, and the current i is
the output. This state-space model can be used in an MPC controller. The state λ will be
linearized using a piecewise affine map fpwa(i) according to the machine’s operating point.

3. Piecewise Affine Magnetic Model

This research proposes using a PWA map to represent the PMSM magnetic model.
PWA maps take a nonlinear map and divide it into M domains. In each domain, the
function is linearized [24]. The PWA current to flux map can be described as

λ = f (i) ≈ fPWA(i) =


L1i + ψ1, i ∈ I1,
L2i + ψ2, i ∈ I2,
· · ·

LMi + ψM, i ∈ IM,

(7)

where λ = Lji +ψj maps the currents i ∈ Ij onto fluxes λ ∈ Λj as an affine function and the
image of the domain Ij is Λj. The affine map is defined by a set of equations with a specific
inductance matrix Lj and a flux offset vector ψj for each region.

The inverse of f (·) is

i = g(λ) ≈ gPWA(λ) =


L−1

1 (λ− ψ1), λ ∈ Λ1,
L−1

2 (λ− ψ2), λ ∈ Λ2,
· · ·

L−1
M (λ− ψM), λ ∈ ΛM,

(8)

such that i = g ◦ f (i).
The process to create this PWA MM can be divided into four steps: (1) choose IP,

(2) Delaunay triangulation of IP, (3) compute all Lj and ψj values, and (4) assign all Lj
and ψj values to Ij. This process is shown in Figure 3. The following subsections describe
each step.

3.1. Choosing IP

IP ⊆ I is the set of measured [12–15,17–20], simulated [12,13,17], or estimated [8–10]
current points that will be used to create the PWA MM. The corresponding flux set Λp must
also be known. In general, there are too many points to all be used to create the MM as,
at some point, the PWA function becomes too large for a DSP with finite memory.

IP can be regularly gridded (i.e., id and iq datapoints are evenly separated). The corre-
sponding flux points Λp will not necessarily be regularly gridded. This can be seen in the
vertices of the triangles in Figure 4. The particular shape of Ip and Λp will depend on the
machine’s operating points or regions. In this case, Ip is bounded by the box constraint
Ip = {i ∈ I|i ≤ imax}. The shape of the flux image is found using Equation (7) and
depends on the inductance throughout the machine. In this case, ΛM becomes an irregular
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shape resembling a bulged rectangle. Other bounds may be a continuous (or derated)
current, the MTPA region, etc. These are explored in more detail in Section 5.

An irregularly gridded IP can yield a higher-accuracy MM for the same number
of points as the regularly gridded value because the flux error is not evenly distributed
(explored in Section 4). Irregularly gridded current points can also target areas in I and Λ
that may be more frequently used, such as derated operation and MTPA. The method for
obtaining these sets will be shown in Section 4.

Figure 3. Four-step process to create a piecewise affine (PWA) magnetic model (MM).

Figure 4. (left) Mesh of simplices Ij ∈ IM created using a 13-by-13 regularly gridded IP in current
space. (right) Corresponding mesh of simplices Λj ∈ ΛM in flux space.

3.2. Subdomains and the Delaunay Triangulation

Building the PWA function requires the domain and image to be split up into M
non-overlapping regions or subdomains and subimages, denoted by Ij and Λj, respectively.
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A point i ∈ I can only be in two (or more) subdomains if it is on the border i ∈ ∂Ij of
two (or more) subdomains. Points on the borders of two (or more) subdomains guarantee
continuity and will also be on the border of the corresponding flux subimages λ ∈ ∂Λ.
Otherwise, points that are not on the border of subdomains are only part of one subdomain
and subimage.

The Delaunay triangulation DT(IP) [25] of the set of points IP creates a set of unique,
connected simplices IM. The Delaunay triangulation is the dual version of the more familiar
Voronoi diagram. The Voronoi diagram of a set of points IP ∈ I splits the space I into
|IP| “Voronoi cells”, where the points in each cell are closer to some point i ∈ IP than any
of the other points i ∈ IP. An example of the Delaunay triangulation in the current and
flux space is shown in Figure 5, and a Voronoi diagram in the current domain with the
corresponding Delaunay triangulation for an example set IP is shown in Figure 4.

Figure 5. Voronoi diagram (left) of a seven-point irregular current grid and the corresponding
eight-simplex Delaunay triangulation (right).

Each subdomain and subimage is a simplex, which is a triangle in the two dimensions
(dq) of this problem. (In general, a simplex is the simplest possible polytope given the
dimension of the problem.) A simplex can be defined by the convex hullH of D + 1 vertices
or as a set of D + 1 affine inequalities (where D is the dimensionality of the problem). These
definitions are called V-notation and H-notation, respectively [26]. A simplex in the current
domain comprising the vertices ij0 , . . . , ijD ∈ IP is

Ij = H({ij0 , ij1 , . . . , ijD}). (9)

Each current simplex Ij forms a domain of an affine map that maps onto a flux simplex
comprising the vertices λj0 , . . . , λjD ∈ ΛP, and the flux simplex is

Λj = H({λj0 , λj1 , . . . , λjD}). (10)

The definition of the Delaunay triangulation (via the Voronoi diagram) implies that the
vertices of each simplex are not degenerate (full dimensions) and are linearly independent
(in both I and Λ spaces).

3.3. Subdomain Coefficients

As previously explained, a current simplex for the PMSM Ij is defined by D + 1 (three)
vertices as shown in Equaiton (9). A shifted dimension is defined by letting (any) of the
vertices ij0 become the new reference origin ī = i − ij0 . The whole simplex thus shifts
and becomes

Īj = H(0, īj1 , . . . , ījD}), (11)
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where the set of new current vectors ījk = ijk − ij0 spans the simplex. As with the current,
we shift the flux space by the corresponding flux vector λ̄ = λ− λj0 , which results in

Λ̄j = H(0, λ̄j1 , . . . , λ̄jD}), (12)

where λ̄jk = λjk − λj0 spans the simplex and k = {1, . . . , D}. The shifted simplices are
shown in Figure 6.

Figure 6. Visualization of fpwa: (left) current simplex (triangle) Īj shifted by ij0 vector and (right)
corresponding flux simplex (triangle) Λ̄j shifted by λj0 vector.

The affine map is an isomorphism, and the vertices form the basis, so the position of a
vector in the current space relative to the shifted origin is the same as the position of the
flux vector from the origin of the shifted flux simplex:

ī = a1 īj1 + · · ·+ aD ījD . (13)

The process of computing the a coefficients is similar to computing the relative on
times in space vector modulation (SVM) [24]. We start by projecting ī onto the basis vectors
of Īj:

pjk = projījk
ī =

ījk · ī
‖ījk‖

, (14)

Then, we divide the magnitude of this projection by the magnitude of the shifted basis
vectors to obtain the a vector:

ajk =
‖pjk‖
‖ījk‖

. (15)

To calculate the flux, we simply multiply the basis vectors of Λ̄j by the a coefficients:

λ̄ = a1λ̄j1 + · · ·+ aDλ̄jD . (16)

Finally, we un-shift the flux to obtain the machine flux at this current point:

λ = λ̄ + λj0 (17)

Equations (13)–(17) can be compressed using matrix notation. We define the bases of
the shifted simplices Īj and Λ̄j as

MĪj
=
[
īj1 , . . . , ījD

]
, (18a)

MΛ̄j
=
[
λ̄j1 , . . . , λ̄jD

]
, (18b)
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In addition, a = [a1, . . . , aD]
T . Equations (13) and (16) can be rewritten as ī = MĪj

a and

λ̄ = MΛ̄j
a, respectively. Because the simplices are nondegenerate, the bases are nonsingular,

and we can find a linear relation:

M−1
Λ̄j

λ̄ = M−1
Īj

ī. (19)

This expression is useful because as long as MΛ̄j
and MΛ̄j

exist and are invertible
(which they are by the definition of a basis), then the current and flux can be related to each
other (in either direction). The flux in terms of the current can be solved by unshifting the
basis vectors

M−1
Λ̄j

(λ− λj0) = M−1
Īj

(i− ij0), (20)

and rearranging them to obtain

λ = Lji + ψj, (21)

with Lj = MΛ̄j
M−1
Īj

and ψj = λj0 − Ljij0 . Matrix algebra can be employed to solve for the

reverse map i = g(λ) from Equation (8) just as easily.

3.4. Assign Coefficients to Simplices

The coefficients Lj and ψj are assigned to their simplex Ij. Grouping all such functions
produces the PWA MM of Equation (7). Examples of differently sized, regularly gridded
PWA MM functions are shown in Figure 7.

Figure 7. PWA MM functions at various resolutions using regularly gridded IP: (left) d-axis flux λd
from fPWA and (right) q-axis flux λd.

4. Magnetic Model Optimization

Choosing which areas to minimize the flux error in fPWA by selectively choosing the
points to use IP depends on the application. The metric chosen to measure the flux error of
a PWA MM to the reference (FEA spline) MM at any given point is the 2-Norm flux error.
An example of the two-norm flux error distribution using a 13× 13 regularly gridded IP to
create fPWA is shown in Figure 8. The flux error is the highest where the flux linkage is the
most nonlinear (see Figure 2).

Given an allotted size for IP, where |IP| = N, an algorithm is devised that chooses
IP to minimize the maximum two-norm flux error. In this algorithm, first, the minimum
number of points (IP and ΛP) to cover the full current domain I are chosen (step A). In the
dq current space, this is a square and thus has four points. Then, steps 2–4 of building
fPWA (see Figure 3) are executed (step B). If the size of IP is less than N, then we compute
the two-norm flux error of k random current points in I (step C). The number k should be
much larger than N, where k� N. Then, we identify the maximum error point (imax, λmax)
(step D). Next, we add the maximum error point to IP and ΛP (step F). This will ensure
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that the error at this new point in fPWA is 0%, and the error surrounding this point will
be significantly reduced. Steps B, C, D, E, and F repeat until |IP| = N. The PWA MM
algorithm optimization steps (A–F) and PWA MM creation steps (1–4) are shown in Figure 9.

Figure 8. Two-norm flux error distribution between fPWA(i) and fS(i), fPWA(i) constructed using
regularly gridded 13× 13 IP, where fS(i) uses high-fidelity spline-interpolated FEA data points.

Figure 9. PWA MM optimization algorithm to minimize the maximum two-norm flux error in fPWA

given an allotted N number of of points to use (|IP| = N).

The three areas of interest that will be explored are: the full current range (I), the
approximate MTPA trajectory region (IMTPA), and the approximate derated current region
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(Iderated). I represents all currents within absolute maximum current limits, I = {i ∈
I|i ≤ imax}. Iderated represents the typical rated or continuous current limit, Iderated =
{i ∈ I| ||idq|| ≤ irated}, where in this case irated = 0.75pu. IMTPA follow the MTPA
trajectory [23], and is an area instead of a region to account for temperature variations in
the machine parameters. These three regions are shown in Figure 10.

Figure 10. Visualization of three regions of current to optimize fPWA: I , IMTPA, and Iderated.

5. Experimental Results

The PWA method of building a MM is evaluated primarily by the flux error. In the
following section, fPWA functions created using irregular optimized grids are evaluated.
The points used to construct the model were taken from a large pool of experimental data
points, and the flux points were estimated using least squares approximation. For compari-
son, an fPWA function using a regularly gridded full current space (IP = I) is used, denoted
by I∗. I∗ is constructed using square grids (i.e., 2× 2, 3× 3, ... 6× 6), so N = 4, 9, ...36. All
data for this section came from an IPMSM with the parameters shown in Table 2. The mag-
netic model was compared against a high-fidelity, spline-interpolated MM built using many
FEA data points, denoted by fS.

5.1. Flux Error Analysis

The flux error in an MM will propagate to an error in the state-space model of the
system from Equation (5) and the torque from Equation (2). The two-norm flux error
between fPWA using the irregular optimization algorithm of Section 4 and fS (high-fidelity
model) can be evaluated by sampling many random current points i ∈ I . The average and
maximum of this error within the optimized regions for various values of N are shown in
Figure 11. The linear inductance magnetic model (L and ψ constant throughout all of I) are
also shown, as well as a spline-interpolated magnetic model (lowercase ‘s’, indicating it is
not a high-fidelity model) fs focusing on the MTPA region. Among the irregular optimized
PWA functions, the error was the smallest for the MTPA region as this was the smallest
region by area, and the error was the largest for I as this was the largest area. It can be seen
that the average and maximum errors of I∗ (regularly gridded) were significantly worse
by margins of ≈ 1–3% and ≈ 5–8% respectively.

As expected, the linear MM fl(i) had a much higher flux error than the PWA models
by≈ 20–30% on average and≈ 25–40% maximum. The spline interpolated MM focusing on
the MTPA region outperformed the PWA MM by ≈ 1–3% for the average error and ≈ 1–6%
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for the maximum error. The decreased error is beneficial but does not allow for the linear
state-space model (Equation (5)).

Figure 11. (left) Average and (right) maximum two-norm flux error vs. N points in various magnetic
models (MMs): PWA fPWA(i) (targeting error reduction in specific regions), linearized inductance
model fl(i), and spline model fs(i) (targeting error reduction in MTPA region).

The error distribution in these MMs was not even. As an example, the functions using
36-point (6× 6) regularly gridded current points (I∗) and 40-point irregularly gridded
functions (I , IMTPA, and Iderated) are shown in Figure 12. The simplical mesh IM composed
of all simplices Ij is shown in the top row, the placement of points in IP by the optimization
algorithm for each of these functions is shown in the middle row, and the two-norm flux
error distribution is shown in the bottom row. The two-norm flux error was minimized
only in the region of interest, which is apparent in the low flux error, especially for IMTPA
and Iderated.

Figure 12. (top row) Simplical mesh IM comprising all simplices Ij. (middle row) Placement of
points in IP by the optimization algorithm. (bottom row) Two-norm flux error distribution. (first
column) fPWA using regularly gridded current points covering I . (second column) fPWA using
irregularly gridded current points optimizing I . (third column) fPWA using irregularly gridded
current points optimizing IMTPA. (fourth column) fPWA using irregularly gridded current points
optimizing Iderated.
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6. Conclusions

In this study, a formal method for creating piecewise affine flux linkage maps for a
PMSM is presented using a four-step process. This model is linear while also capturing
saturation, a useful combination for efficient and robust VF-MPC control. A six-step process
for optimizing the magnetic model for a given region is also shown, and the optimization
is presented for the MTPA and derated regions of operation. Experimental data points
were compared to the FEA-simulated datapoints for a wide range of model resolutions,
with an average flux error of less than 1% and a maximum error of less than 3% when using
only 40 points. Over the full range of model resolutions, there was a ≈ 1–3% and ≈ 5–8%
reduction in the flux error compared with a regularly gridded model.
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Abbreviations
The following abbreviations are used in this manuscript:

DSP Digital signal processor
FEA Finite element analysis
IPMSM Interior permanent-magnet synchronous machine
MCU Microcontroller
MM Magnetic model
MPC Model predictive control
MTPA Maximum torque per ampere
PM Permanent magnet
PMSM Permanent-magnet synchronous machine
PWA Piecewise affine
SPMSM Surface-mounted permanent-magnet synchronous machine
THD Total harmonic distortion
pu Per unit
VF-MPC Virtual-flux model predictive control
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